MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2basgen Structured version   Visualization version   GIF version

Theorem 2basgen 22893
Description: Conditions that determine the equality of two generated topologies. (Contributed by NM, 8-May-2007.) (Revised by Mario Carneiro, 2-Sep-2015.)
Assertion
Ref Expression
2basgen ((𝐵𝐶𝐶 ⊆ (topGen‘𝐵)) → (topGen‘𝐵) = (topGen‘𝐶))

Proof of Theorem 2basgen
StepHypRef Expression
1 fvex 6839 . . . 4 (topGen‘𝐵) ∈ V
21ssex 5263 . . 3 (𝐶 ⊆ (topGen‘𝐵) → 𝐶 ∈ V)
3 simpl 482 . . 3 ((𝐵𝐶𝐶 ⊆ (topGen‘𝐵)) → 𝐵𝐶)
4 tgss 22871 . . 3 ((𝐶 ∈ V ∧ 𝐵𝐶) → (topGen‘𝐵) ⊆ (topGen‘𝐶))
52, 3, 4syl2an2 686 . 2 ((𝐵𝐶𝐶 ⊆ (topGen‘𝐵)) → (topGen‘𝐵) ⊆ (topGen‘𝐶))
6 simpr 484 . . 3 ((𝐵𝐶𝐶 ⊆ (topGen‘𝐵)) → 𝐶 ⊆ (topGen‘𝐵))
7 ssexg 5265 . . . . 5 ((𝐵𝐶𝐶 ∈ V) → 𝐵 ∈ V)
82, 7sylan2 593 . . . 4 ((𝐵𝐶𝐶 ⊆ (topGen‘𝐵)) → 𝐵 ∈ V)
9 tgss3 22889 . . . 4 ((𝐶 ∈ V ∧ 𝐵 ∈ V) → ((topGen‘𝐶) ⊆ (topGen‘𝐵) ↔ 𝐶 ⊆ (topGen‘𝐵)))
102, 8, 9syl2an2 686 . . 3 ((𝐵𝐶𝐶 ⊆ (topGen‘𝐵)) → ((topGen‘𝐶) ⊆ (topGen‘𝐵) ↔ 𝐶 ⊆ (topGen‘𝐵)))
116, 10mpbird 257 . 2 ((𝐵𝐶𝐶 ⊆ (topGen‘𝐵)) → (topGen‘𝐶) ⊆ (topGen‘𝐵))
125, 11eqssd 3955 1 ((𝐵𝐶𝐶 ⊆ (topGen‘𝐵)) → (topGen‘𝐵) = (topGen‘𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  Vcvv 3438  wss 3905  cfv 6486  topGenctg 17359
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-iota 6442  df-fun 6488  df-fv 6494  df-topgen 17365
This theorem is referenced by:  leordtval2  23115  2ndcsb  23352  txbasval  23509  prdsxmslem2  24433  tgioo  24700  tgqioo  24704
  Copyright terms: Public domain W3C validator