![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2basgen | Structured version Visualization version GIF version |
Description: Conditions that determine the equality of two generated topologies. (Contributed by NM, 8-May-2007.) (Revised by Mario Carneiro, 2-Sep-2015.) |
Ref | Expression |
---|---|
2basgen | ⊢ ((𝐵 ⊆ 𝐶 ∧ 𝐶 ⊆ (topGen‘𝐵)) → (topGen‘𝐵) = (topGen‘𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvex 6920 | . . . 4 ⊢ (topGen‘𝐵) ∈ V | |
2 | 1 | ssex 5327 | . . 3 ⊢ (𝐶 ⊆ (topGen‘𝐵) → 𝐶 ∈ V) |
3 | simpl 482 | . . 3 ⊢ ((𝐵 ⊆ 𝐶 ∧ 𝐶 ⊆ (topGen‘𝐵)) → 𝐵 ⊆ 𝐶) | |
4 | tgss 22991 | . . 3 ⊢ ((𝐶 ∈ V ∧ 𝐵 ⊆ 𝐶) → (topGen‘𝐵) ⊆ (topGen‘𝐶)) | |
5 | 2, 3, 4 | syl2an2 686 | . 2 ⊢ ((𝐵 ⊆ 𝐶 ∧ 𝐶 ⊆ (topGen‘𝐵)) → (topGen‘𝐵) ⊆ (topGen‘𝐶)) |
6 | simpr 484 | . . 3 ⊢ ((𝐵 ⊆ 𝐶 ∧ 𝐶 ⊆ (topGen‘𝐵)) → 𝐶 ⊆ (topGen‘𝐵)) | |
7 | ssexg 5329 | . . . . 5 ⊢ ((𝐵 ⊆ 𝐶 ∧ 𝐶 ∈ V) → 𝐵 ∈ V) | |
8 | 2, 7 | sylan2 593 | . . . 4 ⊢ ((𝐵 ⊆ 𝐶 ∧ 𝐶 ⊆ (topGen‘𝐵)) → 𝐵 ∈ V) |
9 | tgss3 23009 | . . . 4 ⊢ ((𝐶 ∈ V ∧ 𝐵 ∈ V) → ((topGen‘𝐶) ⊆ (topGen‘𝐵) ↔ 𝐶 ⊆ (topGen‘𝐵))) | |
10 | 2, 8, 9 | syl2an2 686 | . . 3 ⊢ ((𝐵 ⊆ 𝐶 ∧ 𝐶 ⊆ (topGen‘𝐵)) → ((topGen‘𝐶) ⊆ (topGen‘𝐵) ↔ 𝐶 ⊆ (topGen‘𝐵))) |
11 | 6, 10 | mpbird 257 | . 2 ⊢ ((𝐵 ⊆ 𝐶 ∧ 𝐶 ⊆ (topGen‘𝐵)) → (topGen‘𝐶) ⊆ (topGen‘𝐵)) |
12 | 5, 11 | eqssd 4013 | 1 ⊢ ((𝐵 ⊆ 𝐶 ∧ 𝐶 ⊆ (topGen‘𝐵)) → (topGen‘𝐵) = (topGen‘𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2106 Vcvv 3478 ⊆ wss 3963 ‘cfv 6563 topGenctg 17484 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-iota 6516 df-fun 6565 df-fv 6571 df-topgen 17490 |
This theorem is referenced by: leordtval2 23236 2ndcsb 23473 txbasval 23630 prdsxmslem2 24558 tgioo 24832 tgqioo 24836 |
Copyright terms: Public domain | W3C validator |