MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2basgen Structured version   Visualization version   GIF version

Theorem 2basgen 22884
Description: Conditions that determine the equality of two generated topologies. (Contributed by NM, 8-May-2007.) (Revised by Mario Carneiro, 2-Sep-2015.)
Assertion
Ref Expression
2basgen ((𝐵𝐶𝐶 ⊆ (topGen‘𝐵)) → (topGen‘𝐵) = (topGen‘𝐶))

Proof of Theorem 2basgen
StepHypRef Expression
1 fvex 6874 . . . 4 (topGen‘𝐵) ∈ V
21ssex 5279 . . 3 (𝐶 ⊆ (topGen‘𝐵) → 𝐶 ∈ V)
3 simpl 482 . . 3 ((𝐵𝐶𝐶 ⊆ (topGen‘𝐵)) → 𝐵𝐶)
4 tgss 22862 . . 3 ((𝐶 ∈ V ∧ 𝐵𝐶) → (topGen‘𝐵) ⊆ (topGen‘𝐶))
52, 3, 4syl2an2 686 . 2 ((𝐵𝐶𝐶 ⊆ (topGen‘𝐵)) → (topGen‘𝐵) ⊆ (topGen‘𝐶))
6 simpr 484 . . 3 ((𝐵𝐶𝐶 ⊆ (topGen‘𝐵)) → 𝐶 ⊆ (topGen‘𝐵))
7 ssexg 5281 . . . . 5 ((𝐵𝐶𝐶 ∈ V) → 𝐵 ∈ V)
82, 7sylan2 593 . . . 4 ((𝐵𝐶𝐶 ⊆ (topGen‘𝐵)) → 𝐵 ∈ V)
9 tgss3 22880 . . . 4 ((𝐶 ∈ V ∧ 𝐵 ∈ V) → ((topGen‘𝐶) ⊆ (topGen‘𝐵) ↔ 𝐶 ⊆ (topGen‘𝐵)))
102, 8, 9syl2an2 686 . . 3 ((𝐵𝐶𝐶 ⊆ (topGen‘𝐵)) → ((topGen‘𝐶) ⊆ (topGen‘𝐵) ↔ 𝐶 ⊆ (topGen‘𝐵)))
116, 10mpbird 257 . 2 ((𝐵𝐶𝐶 ⊆ (topGen‘𝐵)) → (topGen‘𝐶) ⊆ (topGen‘𝐵))
125, 11eqssd 3967 1 ((𝐵𝐶𝐶 ⊆ (topGen‘𝐵)) → (topGen‘𝐵) = (topGen‘𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  Vcvv 3450  wss 3917  cfv 6514  topGenctg 17407
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-iota 6467  df-fun 6516  df-fv 6522  df-topgen 17413
This theorem is referenced by:  leordtval2  23106  2ndcsb  23343  txbasval  23500  prdsxmslem2  24424  tgioo  24691  tgqioo  24695
  Copyright terms: Public domain W3C validator