![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2basgen | Structured version Visualization version GIF version |
Description: Conditions that determine the equality of two generated topologies. (Contributed by NM, 8-May-2007.) (Revised by Mario Carneiro, 2-Sep-2015.) |
Ref | Expression |
---|---|
2basgen | ⊢ ((𝐵 ⊆ 𝐶 ∧ 𝐶 ⊆ (topGen‘𝐵)) → (topGen‘𝐵) = (topGen‘𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvex 6914 | . . . 4 ⊢ (topGen‘𝐵) ∈ V | |
2 | 1 | ssex 5326 | . . 3 ⊢ (𝐶 ⊆ (topGen‘𝐵) → 𝐶 ∈ V) |
3 | simpl 481 | . . 3 ⊢ ((𝐵 ⊆ 𝐶 ∧ 𝐶 ⊆ (topGen‘𝐵)) → 𝐵 ⊆ 𝐶) | |
4 | tgss 22962 | . . 3 ⊢ ((𝐶 ∈ V ∧ 𝐵 ⊆ 𝐶) → (topGen‘𝐵) ⊆ (topGen‘𝐶)) | |
5 | 2, 3, 4 | syl2an2 684 | . 2 ⊢ ((𝐵 ⊆ 𝐶 ∧ 𝐶 ⊆ (topGen‘𝐵)) → (topGen‘𝐵) ⊆ (topGen‘𝐶)) |
6 | simpr 483 | . . 3 ⊢ ((𝐵 ⊆ 𝐶 ∧ 𝐶 ⊆ (topGen‘𝐵)) → 𝐶 ⊆ (topGen‘𝐵)) | |
7 | ssexg 5328 | . . . . 5 ⊢ ((𝐵 ⊆ 𝐶 ∧ 𝐶 ∈ V) → 𝐵 ∈ V) | |
8 | 2, 7 | sylan2 591 | . . . 4 ⊢ ((𝐵 ⊆ 𝐶 ∧ 𝐶 ⊆ (topGen‘𝐵)) → 𝐵 ∈ V) |
9 | tgss3 22980 | . . . 4 ⊢ ((𝐶 ∈ V ∧ 𝐵 ∈ V) → ((topGen‘𝐶) ⊆ (topGen‘𝐵) ↔ 𝐶 ⊆ (topGen‘𝐵))) | |
10 | 2, 8, 9 | syl2an2 684 | . . 3 ⊢ ((𝐵 ⊆ 𝐶 ∧ 𝐶 ⊆ (topGen‘𝐵)) → ((topGen‘𝐶) ⊆ (topGen‘𝐵) ↔ 𝐶 ⊆ (topGen‘𝐵))) |
11 | 6, 10 | mpbird 256 | . 2 ⊢ ((𝐵 ⊆ 𝐶 ∧ 𝐶 ⊆ (topGen‘𝐵)) → (topGen‘𝐶) ⊆ (topGen‘𝐵)) |
12 | 5, 11 | eqssd 3997 | 1 ⊢ ((𝐵 ⊆ 𝐶 ∧ 𝐶 ⊆ (topGen‘𝐵)) → (topGen‘𝐵) = (topGen‘𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1534 ∈ wcel 2099 Vcvv 3462 ⊆ wss 3947 ‘cfv 6554 topGenctg 17452 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5304 ax-nul 5311 ax-pow 5369 ax-pr 5433 ax-un 7746 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3464 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4914 df-iun 5003 df-br 5154 df-opab 5216 df-mpt 5237 df-id 5580 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-iota 6506 df-fun 6556 df-fv 6562 df-topgen 17458 |
This theorem is referenced by: leordtval2 23207 2ndcsb 23444 txbasval 23601 prdsxmslem2 24529 tgioo 24803 tgqioo 24807 |
Copyright terms: Public domain | W3C validator |