![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > oftpos | Structured version Visualization version GIF version |
Description: The transposition of the value of a function operation for two functions is the value of the function operation for the two functions transposed. (Contributed by Stefan O'Rear, 17-Jul-2018.) |
Ref | Expression |
---|---|
oftpos | ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊) → tpos (𝐹 ∘𝑓 𝑅𝐺) = (tpos 𝐹 ∘𝑓 𝑅tpos 𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3414 | . . . 4 ⊢ (𝐹 ∈ 𝑉 → 𝐹 ∈ V) | |
2 | 1 | adantr 474 | . . 3 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊) → 𝐹 ∈ V) |
3 | elex 3414 | . . . 4 ⊢ (𝐺 ∈ 𝑊 → 𝐺 ∈ V) | |
4 | 3 | adantl 475 | . . 3 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊) → 𝐺 ∈ V) |
5 | funmpt 6175 | . . . 4 ⊢ Fun (𝑥 ∈ ((V × V) ∪ {∅}) ↦ ∪ ◡{𝑥}) | |
6 | 5 | a1i 11 | . . 3 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊) → Fun (𝑥 ∈ ((V × V) ∪ {∅}) ↦ ∪ ◡{𝑥})) |
7 | dftpos4 7655 | . . . 4 ⊢ tpos 𝐹 = (𝐹 ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ ∪ ◡{𝑥})) | |
8 | tposexg 7650 | . . . . 5 ⊢ (𝐹 ∈ 𝑉 → tpos 𝐹 ∈ V) | |
9 | 8 | adantr 474 | . . . 4 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊) → tpos 𝐹 ∈ V) |
10 | 7, 9 | syl5eqelr 2864 | . . 3 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊) → (𝐹 ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ ∪ ◡{𝑥})) ∈ V) |
11 | dftpos4 7655 | . . . 4 ⊢ tpos 𝐺 = (𝐺 ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ ∪ ◡{𝑥})) | |
12 | tposexg 7650 | . . . . 5 ⊢ (𝐺 ∈ 𝑊 → tpos 𝐺 ∈ V) | |
13 | 12 | adantl 475 | . . . 4 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊) → tpos 𝐺 ∈ V) |
14 | 11, 13 | syl5eqelr 2864 | . . 3 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊) → (𝐺 ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ ∪ ◡{𝑥})) ∈ V) |
15 | ofco2 20673 | . . 3 ⊢ (((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun (𝑥 ∈ ((V × V) ∪ {∅}) ↦ ∪ ◡{𝑥}) ∧ (𝐹 ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ ∪ ◡{𝑥})) ∈ V ∧ (𝐺 ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ ∪ ◡{𝑥})) ∈ V)) → ((𝐹 ∘𝑓 𝑅𝐺) ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ ∪ ◡{𝑥})) = ((𝐹 ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ ∪ ◡{𝑥})) ∘𝑓 𝑅(𝐺 ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ ∪ ◡{𝑥})))) | |
16 | 2, 4, 6, 10, 14, 15 | syl23anc 1445 | . 2 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊) → ((𝐹 ∘𝑓 𝑅𝐺) ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ ∪ ◡{𝑥})) = ((𝐹 ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ ∪ ◡{𝑥})) ∘𝑓 𝑅(𝐺 ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ ∪ ◡{𝑥})))) |
17 | dftpos4 7655 | . 2 ⊢ tpos (𝐹 ∘𝑓 𝑅𝐺) = ((𝐹 ∘𝑓 𝑅𝐺) ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ ∪ ◡{𝑥})) | |
18 | 7, 11 | oveq12i 6936 | . 2 ⊢ (tpos 𝐹 ∘𝑓 𝑅tpos 𝐺) = ((𝐹 ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ ∪ ◡{𝑥})) ∘𝑓 𝑅(𝐺 ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ ∪ ◡{𝑥}))) |
19 | 16, 17, 18 | 3eqtr4g 2839 | 1 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊) → tpos (𝐹 ∘𝑓 𝑅𝐺) = (tpos 𝐹 ∘𝑓 𝑅tpos 𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 = wceq 1601 ∈ wcel 2107 Vcvv 3398 ∪ cun 3790 ∅c0 4141 {csn 4398 ∪ cuni 4673 ↦ cmpt 4967 × cxp 5355 ◡ccnv 5356 ∘ ccom 5361 Fun wfun 6131 (class class class)co 6924 ∘𝑓 cof 7174 tpos ctpos 7635 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-rep 5008 ax-sep 5019 ax-nul 5027 ax-pow 5079 ax-pr 5140 ax-un 7228 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-ral 3095 df-rex 3096 df-reu 3097 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-op 4405 df-uni 4674 df-iun 4757 df-br 4889 df-opab 4951 df-mpt 4968 df-id 5263 df-xp 5363 df-rel 5364 df-cnv 5365 df-co 5366 df-dm 5367 df-rn 5368 df-res 5369 df-ima 5370 df-iota 6101 df-fun 6139 df-fn 6140 df-f 6141 df-f1 6142 df-fo 6143 df-f1o 6144 df-fv 6145 df-ov 6927 df-oprab 6928 df-mpt2 6929 df-of 7176 df-tpos 7636 |
This theorem is referenced by: mattposvs 20677 |
Copyright terms: Public domain | W3C validator |