![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > oftpos | Structured version Visualization version GIF version |
Description: The transposition of the value of a function operation for two functions is the value of the function operation for the two functions transposed. (Contributed by Stefan O'Rear, 17-Jul-2018.) |
Ref | Expression |
---|---|
oftpos | ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊) → tpos (𝐹 ∘f 𝑅𝐺) = (tpos 𝐹 ∘f 𝑅tpos 𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3484 | . . . 4 ⊢ (𝐹 ∈ 𝑉 → 𝐹 ∈ V) | |
2 | 1 | adantr 479 | . . 3 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊) → 𝐹 ∈ V) |
3 | elex 3484 | . . . 4 ⊢ (𝐺 ∈ 𝑊 → 𝐺 ∈ V) | |
4 | 3 | adantl 480 | . . 3 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊) → 𝐺 ∈ V) |
5 | funmpt 6588 | . . . 4 ⊢ Fun (𝑥 ∈ ((V × V) ∪ {∅}) ↦ ∪ ◡{𝑥}) | |
6 | 5 | a1i 11 | . . 3 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊) → Fun (𝑥 ∈ ((V × V) ∪ {∅}) ↦ ∪ ◡{𝑥})) |
7 | dftpos4 8251 | . . . 4 ⊢ tpos 𝐹 = (𝐹 ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ ∪ ◡{𝑥})) | |
8 | tposexg 8246 | . . . . 5 ⊢ (𝐹 ∈ 𝑉 → tpos 𝐹 ∈ V) | |
9 | 8 | adantr 479 | . . . 4 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊) → tpos 𝐹 ∈ V) |
10 | 7, 9 | eqeltrrid 2831 | . . 3 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊) → (𝐹 ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ ∪ ◡{𝑥})) ∈ V) |
11 | dftpos4 8251 | . . . 4 ⊢ tpos 𝐺 = (𝐺 ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ ∪ ◡{𝑥})) | |
12 | tposexg 8246 | . . . . 5 ⊢ (𝐺 ∈ 𝑊 → tpos 𝐺 ∈ V) | |
13 | 12 | adantl 480 | . . . 4 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊) → tpos 𝐺 ∈ V) |
14 | 11, 13 | eqeltrrid 2831 | . . 3 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊) → (𝐺 ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ ∪ ◡{𝑥})) ∈ V) |
15 | ofco2 22440 | . . 3 ⊢ (((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun (𝑥 ∈ ((V × V) ∪ {∅}) ↦ ∪ ◡{𝑥}) ∧ (𝐹 ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ ∪ ◡{𝑥})) ∈ V ∧ (𝐺 ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ ∪ ◡{𝑥})) ∈ V)) → ((𝐹 ∘f 𝑅𝐺) ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ ∪ ◡{𝑥})) = ((𝐹 ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ ∪ ◡{𝑥})) ∘f 𝑅(𝐺 ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ ∪ ◡{𝑥})))) | |
16 | 2, 4, 6, 10, 14, 15 | syl23anc 1374 | . 2 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊) → ((𝐹 ∘f 𝑅𝐺) ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ ∪ ◡{𝑥})) = ((𝐹 ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ ∪ ◡{𝑥})) ∘f 𝑅(𝐺 ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ ∪ ◡{𝑥})))) |
17 | dftpos4 8251 | . 2 ⊢ tpos (𝐹 ∘f 𝑅𝐺) = ((𝐹 ∘f 𝑅𝐺) ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ ∪ ◡{𝑥})) | |
18 | 7, 11 | oveq12i 7427 | . 2 ⊢ (tpos 𝐹 ∘f 𝑅tpos 𝐺) = ((𝐹 ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ ∪ ◡{𝑥})) ∘f 𝑅(𝐺 ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ ∪ ◡{𝑥}))) |
19 | 16, 17, 18 | 3eqtr4g 2791 | 1 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊) → tpos (𝐹 ∘f 𝑅𝐺) = (tpos 𝐹 ∘f 𝑅tpos 𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1534 ∈ wcel 2099 Vcvv 3464 ∪ cun 3946 ∅c0 4324 {csn 4625 ∪ cuni 4907 ↦ cmpt 5228 × cxp 5672 ◡ccnv 5673 ∘ ccom 5678 Fun wfun 6539 (class class class)co 7415 ∘f cof 7679 tpos ctpos 8231 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5282 ax-sep 5296 ax-nul 5303 ax-pow 5361 ax-pr 5425 ax-un 7737 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-ral 3052 df-rex 3061 df-reu 3366 df-rab 3421 df-v 3466 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4325 df-if 4526 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4908 df-iun 4997 df-br 5146 df-opab 5208 df-mpt 5229 df-id 5572 df-xp 5680 df-rel 5681 df-cnv 5682 df-co 5683 df-dm 5684 df-rn 5685 df-res 5686 df-ima 5687 df-iota 6497 df-fun 6547 df-fn 6548 df-f 6549 df-f1 6550 df-fo 6551 df-f1o 6552 df-fv 6553 df-ov 7418 df-oprab 7419 df-mpo 7420 df-of 7681 df-tpos 8232 |
This theorem is referenced by: mattposvs 22444 |
Copyright terms: Public domain | W3C validator |