Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > oftpos | Structured version Visualization version GIF version |
Description: The transposition of the value of a function operation for two functions is the value of the function operation for the two functions transposed. (Contributed by Stefan O'Rear, 17-Jul-2018.) |
Ref | Expression |
---|---|
oftpos | ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊) → tpos (𝐹 ∘f 𝑅𝐺) = (tpos 𝐹 ∘f 𝑅tpos 𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3440 | . . . 4 ⊢ (𝐹 ∈ 𝑉 → 𝐹 ∈ V) | |
2 | 1 | adantr 480 | . . 3 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊) → 𝐹 ∈ V) |
3 | elex 3440 | . . . 4 ⊢ (𝐺 ∈ 𝑊 → 𝐺 ∈ V) | |
4 | 3 | adantl 481 | . . 3 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊) → 𝐺 ∈ V) |
5 | funmpt 6456 | . . . 4 ⊢ Fun (𝑥 ∈ ((V × V) ∪ {∅}) ↦ ∪ ◡{𝑥}) | |
6 | 5 | a1i 11 | . . 3 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊) → Fun (𝑥 ∈ ((V × V) ∪ {∅}) ↦ ∪ ◡{𝑥})) |
7 | dftpos4 8032 | . . . 4 ⊢ tpos 𝐹 = (𝐹 ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ ∪ ◡{𝑥})) | |
8 | tposexg 8027 | . . . . 5 ⊢ (𝐹 ∈ 𝑉 → tpos 𝐹 ∈ V) | |
9 | 8 | adantr 480 | . . . 4 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊) → tpos 𝐹 ∈ V) |
10 | 7, 9 | eqeltrrid 2844 | . . 3 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊) → (𝐹 ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ ∪ ◡{𝑥})) ∈ V) |
11 | dftpos4 8032 | . . . 4 ⊢ tpos 𝐺 = (𝐺 ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ ∪ ◡{𝑥})) | |
12 | tposexg 8027 | . . . . 5 ⊢ (𝐺 ∈ 𝑊 → tpos 𝐺 ∈ V) | |
13 | 12 | adantl 481 | . . . 4 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊) → tpos 𝐺 ∈ V) |
14 | 11, 13 | eqeltrrid 2844 | . . 3 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊) → (𝐺 ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ ∪ ◡{𝑥})) ∈ V) |
15 | ofco2 21508 | . . 3 ⊢ (((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun (𝑥 ∈ ((V × V) ∪ {∅}) ↦ ∪ ◡{𝑥}) ∧ (𝐹 ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ ∪ ◡{𝑥})) ∈ V ∧ (𝐺 ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ ∪ ◡{𝑥})) ∈ V)) → ((𝐹 ∘f 𝑅𝐺) ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ ∪ ◡{𝑥})) = ((𝐹 ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ ∪ ◡{𝑥})) ∘f 𝑅(𝐺 ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ ∪ ◡{𝑥})))) | |
16 | 2, 4, 6, 10, 14, 15 | syl23anc 1375 | . 2 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊) → ((𝐹 ∘f 𝑅𝐺) ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ ∪ ◡{𝑥})) = ((𝐹 ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ ∪ ◡{𝑥})) ∘f 𝑅(𝐺 ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ ∪ ◡{𝑥})))) |
17 | dftpos4 8032 | . 2 ⊢ tpos (𝐹 ∘f 𝑅𝐺) = ((𝐹 ∘f 𝑅𝐺) ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ ∪ ◡{𝑥})) | |
18 | 7, 11 | oveq12i 7267 | . 2 ⊢ (tpos 𝐹 ∘f 𝑅tpos 𝐺) = ((𝐹 ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ ∪ ◡{𝑥})) ∘f 𝑅(𝐺 ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ ∪ ◡{𝑥}))) |
19 | 16, 17, 18 | 3eqtr4g 2804 | 1 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊) → tpos (𝐹 ∘f 𝑅𝐺) = (tpos 𝐹 ∘f 𝑅tpos 𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 Vcvv 3422 ∪ cun 3881 ∅c0 4253 {csn 4558 ∪ cuni 4836 ↦ cmpt 5153 × cxp 5578 ◡ccnv 5579 ∘ ccom 5584 Fun wfun 6412 (class class class)co 7255 ∘f cof 7509 tpos ctpos 8012 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-of 7511 df-tpos 8013 |
This theorem is referenced by: mattposvs 21512 |
Copyright terms: Public domain | W3C validator |