MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oftpos Structured version   Visualization version   GIF version

Theorem oftpos 22368
Description: The transposition of the value of a function operation for two functions is the value of the function operation for the two functions transposed. (Contributed by Stefan O'Rear, 17-Jul-2018.)
Assertion
Ref Expression
oftpos ((𝐹𝑉𝐺𝑊) → tpos (𝐹f 𝑅𝐺) = (tpos 𝐹f 𝑅tpos 𝐺))

Proof of Theorem oftpos
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elex 3458 . . . 4 (𝐹𝑉𝐹 ∈ V)
21adantr 480 . . 3 ((𝐹𝑉𝐺𝑊) → 𝐹 ∈ V)
3 elex 3458 . . . 4 (𝐺𝑊𝐺 ∈ V)
43adantl 481 . . 3 ((𝐹𝑉𝐺𝑊) → 𝐺 ∈ V)
5 funmpt 6524 . . . 4 Fun (𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥})
65a1i 11 . . 3 ((𝐹𝑉𝐺𝑊) → Fun (𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥}))
7 dftpos4 8181 . . . 4 tpos 𝐹 = (𝐹 ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥}))
8 tposexg 8176 . . . . 5 (𝐹𝑉 → tpos 𝐹 ∈ V)
98adantr 480 . . . 4 ((𝐹𝑉𝐺𝑊) → tpos 𝐹 ∈ V)
107, 9eqeltrrid 2838 . . 3 ((𝐹𝑉𝐺𝑊) → (𝐹 ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥})) ∈ V)
11 dftpos4 8181 . . . 4 tpos 𝐺 = (𝐺 ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥}))
12 tposexg 8176 . . . . 5 (𝐺𝑊 → tpos 𝐺 ∈ V)
1312adantl 481 . . . 4 ((𝐹𝑉𝐺𝑊) → tpos 𝐺 ∈ V)
1411, 13eqeltrrid 2838 . . 3 ((𝐹𝑉𝐺𝑊) → (𝐺 ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥})) ∈ V)
15 ofco2 22367 . . 3 (((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun (𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥}) ∧ (𝐹 ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥})) ∈ V ∧ (𝐺 ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥})) ∈ V)) → ((𝐹f 𝑅𝐺) ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥})) = ((𝐹 ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥})) ∘f 𝑅(𝐺 ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥}))))
162, 4, 6, 10, 14, 15syl23anc 1379 . 2 ((𝐹𝑉𝐺𝑊) → ((𝐹f 𝑅𝐺) ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥})) = ((𝐹 ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥})) ∘f 𝑅(𝐺 ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥}))))
17 dftpos4 8181 . 2 tpos (𝐹f 𝑅𝐺) = ((𝐹f 𝑅𝐺) ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥}))
187, 11oveq12i 7364 . 2 (tpos 𝐹f 𝑅tpos 𝐺) = ((𝐹 ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥})) ∘f 𝑅(𝐺 ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥})))
1916, 17, 183eqtr4g 2793 1 ((𝐹𝑉𝐺𝑊) → tpos (𝐹f 𝑅𝐺) = (tpos 𝐹f 𝑅tpos 𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  Vcvv 3437  cun 3896  c0 4282  {csn 4575   cuni 4858  cmpt 5174   × cxp 5617  ccnv 5618  ccom 5623  Fun wfun 6480  (class class class)co 7352  f cof 7614  tpos ctpos 8161
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7355  df-oprab 7356  df-mpo 7357  df-of 7616  df-tpos 8162
This theorem is referenced by:  mattposvs  22371
  Copyright terms: Public domain W3C validator