MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oftpos Structured version   Visualization version   GIF version

Theorem oftpos 21061
Description: The transposition of the value of a function operation for two functions is the value of the function operation for the two functions transposed. (Contributed by Stefan O'Rear, 17-Jul-2018.)
Assertion
Ref Expression
oftpos ((𝐹𝑉𝐺𝑊) → tpos (𝐹f 𝑅𝐺) = (tpos 𝐹f 𝑅tpos 𝐺))

Proof of Theorem oftpos
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elex 3498 . . . 4 (𝐹𝑉𝐹 ∈ V)
21adantr 484 . . 3 ((𝐹𝑉𝐺𝑊) → 𝐹 ∈ V)
3 elex 3498 . . . 4 (𝐺𝑊𝐺 ∈ V)
43adantl 485 . . 3 ((𝐹𝑉𝐺𝑊) → 𝐺 ∈ V)
5 funmpt 6381 . . . 4 Fun (𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥})
65a1i 11 . . 3 ((𝐹𝑉𝐺𝑊) → Fun (𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥}))
7 dftpos4 7907 . . . 4 tpos 𝐹 = (𝐹 ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥}))
8 tposexg 7902 . . . . 5 (𝐹𝑉 → tpos 𝐹 ∈ V)
98adantr 484 . . . 4 ((𝐹𝑉𝐺𝑊) → tpos 𝐹 ∈ V)
107, 9eqeltrrid 2921 . . 3 ((𝐹𝑉𝐺𝑊) → (𝐹 ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥})) ∈ V)
11 dftpos4 7907 . . . 4 tpos 𝐺 = (𝐺 ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥}))
12 tposexg 7902 . . . . 5 (𝐺𝑊 → tpos 𝐺 ∈ V)
1312adantl 485 . . . 4 ((𝐹𝑉𝐺𝑊) → tpos 𝐺 ∈ V)
1411, 13eqeltrrid 2921 . . 3 ((𝐹𝑉𝐺𝑊) → (𝐺 ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥})) ∈ V)
15 ofco2 21060 . . 3 (((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun (𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥}) ∧ (𝐹 ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥})) ∈ V ∧ (𝐺 ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥})) ∈ V)) → ((𝐹f 𝑅𝐺) ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥})) = ((𝐹 ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥})) ∘f 𝑅(𝐺 ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥}))))
162, 4, 6, 10, 14, 15syl23anc 1374 . 2 ((𝐹𝑉𝐺𝑊) → ((𝐹f 𝑅𝐺) ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥})) = ((𝐹 ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥})) ∘f 𝑅(𝐺 ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥}))))
17 dftpos4 7907 . 2 tpos (𝐹f 𝑅𝐺) = ((𝐹f 𝑅𝐺) ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥}))
187, 11oveq12i 7161 . 2 (tpos 𝐹f 𝑅tpos 𝐺) = ((𝐹 ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥})) ∘f 𝑅(𝐺 ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥})))
1916, 17, 183eqtr4g 2884 1 ((𝐹𝑉𝐺𝑊) → tpos (𝐹f 𝑅𝐺) = (tpos 𝐹f 𝑅tpos 𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2115  Vcvv 3480  cun 3917  c0 4276  {csn 4550   cuni 4824  cmpt 5132   × cxp 5540  ccnv 5541  ccom 5546  Fun wfun 6337  (class class class)co 7149  f cof 7401  tpos ctpos 7887
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5176  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7455
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-ral 3138  df-rex 3139  df-reu 3140  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-op 4557  df-uni 4825  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-id 5447  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-ov 7152  df-oprab 7153  df-mpo 7154  df-of 7403  df-tpos 7888
This theorem is referenced by:  mattposvs  21064
  Copyright terms: Public domain W3C validator