MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oftpos Structured version   Visualization version   GIF version

Theorem oftpos 21060
Description: The transposition of the value of a function operation for two functions is the value of the function operation for the two functions transposed. (Contributed by Stefan O'Rear, 17-Jul-2018.)
Assertion
Ref Expression
oftpos ((𝐹𝑉𝐺𝑊) → tpos (𝐹f 𝑅𝐺) = (tpos 𝐹f 𝑅tpos 𝐺))

Proof of Theorem oftpos
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elex 3512 . . . 4 (𝐹𝑉𝐹 ∈ V)
21adantr 483 . . 3 ((𝐹𝑉𝐺𝑊) → 𝐹 ∈ V)
3 elex 3512 . . . 4 (𝐺𝑊𝐺 ∈ V)
43adantl 484 . . 3 ((𝐹𝑉𝐺𝑊) → 𝐺 ∈ V)
5 funmpt 6392 . . . 4 Fun (𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥})
65a1i 11 . . 3 ((𝐹𝑉𝐺𝑊) → Fun (𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥}))
7 dftpos4 7910 . . . 4 tpos 𝐹 = (𝐹 ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥}))
8 tposexg 7905 . . . . 5 (𝐹𝑉 → tpos 𝐹 ∈ V)
98adantr 483 . . . 4 ((𝐹𝑉𝐺𝑊) → tpos 𝐹 ∈ V)
107, 9eqeltrrid 2918 . . 3 ((𝐹𝑉𝐺𝑊) → (𝐹 ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥})) ∈ V)
11 dftpos4 7910 . . . 4 tpos 𝐺 = (𝐺 ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥}))
12 tposexg 7905 . . . . 5 (𝐺𝑊 → tpos 𝐺 ∈ V)
1312adantl 484 . . . 4 ((𝐹𝑉𝐺𝑊) → tpos 𝐺 ∈ V)
1411, 13eqeltrrid 2918 . . 3 ((𝐹𝑉𝐺𝑊) → (𝐺 ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥})) ∈ V)
15 ofco2 21059 . . 3 (((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun (𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥}) ∧ (𝐹 ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥})) ∈ V ∧ (𝐺 ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥})) ∈ V)) → ((𝐹f 𝑅𝐺) ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥})) = ((𝐹 ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥})) ∘f 𝑅(𝐺 ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥}))))
162, 4, 6, 10, 14, 15syl23anc 1373 . 2 ((𝐹𝑉𝐺𝑊) → ((𝐹f 𝑅𝐺) ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥})) = ((𝐹 ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥})) ∘f 𝑅(𝐺 ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥}))))
17 dftpos4 7910 . 2 tpos (𝐹f 𝑅𝐺) = ((𝐹f 𝑅𝐺) ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥}))
187, 11oveq12i 7167 . 2 (tpos 𝐹f 𝑅tpos 𝐺) = ((𝐹 ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥})) ∘f 𝑅(𝐺 ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥})))
1916, 17, 183eqtr4g 2881 1 ((𝐹𝑉𝐺𝑊) → tpos (𝐹f 𝑅𝐺) = (tpos 𝐹f 𝑅tpos 𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1533  wcel 2110  Vcvv 3494  cun 3933  c0 4290  {csn 4566   cuni 4837  cmpt 5145   × cxp 5552  ccnv 5553  ccom 5558  Fun wfun 6348  (class class class)co 7155  f cof 7406  tpos ctpos 7890
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5189  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4838  df-iun 4920  df-br 5066  df-opab 5128  df-mpt 5146  df-id 5459  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-ov 7158  df-oprab 7159  df-mpo 7160  df-of 7408  df-tpos 7891
This theorem is referenced by:  mattposvs  21063
  Copyright terms: Public domain W3C validator