![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > oftpos | Structured version Visualization version GIF version |
Description: The transposition of the value of a function operation for two functions is the value of the function operation for the two functions transposed. (Contributed by Stefan O'Rear, 17-Jul-2018.) |
Ref | Expression |
---|---|
oftpos | ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊) → tpos (𝐹 ∘f 𝑅𝐺) = (tpos 𝐹 ∘f 𝑅tpos 𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3499 | . . . 4 ⊢ (𝐹 ∈ 𝑉 → 𝐹 ∈ V) | |
2 | 1 | adantr 480 | . . 3 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊) → 𝐹 ∈ V) |
3 | elex 3499 | . . . 4 ⊢ (𝐺 ∈ 𝑊 → 𝐺 ∈ V) | |
4 | 3 | adantl 481 | . . 3 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊) → 𝐺 ∈ V) |
5 | funmpt 6606 | . . . 4 ⊢ Fun (𝑥 ∈ ((V × V) ∪ {∅}) ↦ ∪ ◡{𝑥}) | |
6 | 5 | a1i 11 | . . 3 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊) → Fun (𝑥 ∈ ((V × V) ∪ {∅}) ↦ ∪ ◡{𝑥})) |
7 | dftpos4 8269 | . . . 4 ⊢ tpos 𝐹 = (𝐹 ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ ∪ ◡{𝑥})) | |
8 | tposexg 8264 | . . . . 5 ⊢ (𝐹 ∈ 𝑉 → tpos 𝐹 ∈ V) | |
9 | 8 | adantr 480 | . . . 4 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊) → tpos 𝐹 ∈ V) |
10 | 7, 9 | eqeltrrid 2844 | . . 3 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊) → (𝐹 ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ ∪ ◡{𝑥})) ∈ V) |
11 | dftpos4 8269 | . . . 4 ⊢ tpos 𝐺 = (𝐺 ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ ∪ ◡{𝑥})) | |
12 | tposexg 8264 | . . . . 5 ⊢ (𝐺 ∈ 𝑊 → tpos 𝐺 ∈ V) | |
13 | 12 | adantl 481 | . . . 4 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊) → tpos 𝐺 ∈ V) |
14 | 11, 13 | eqeltrrid 2844 | . . 3 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊) → (𝐺 ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ ∪ ◡{𝑥})) ∈ V) |
15 | ofco2 22473 | . . 3 ⊢ (((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun (𝑥 ∈ ((V × V) ∪ {∅}) ↦ ∪ ◡{𝑥}) ∧ (𝐹 ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ ∪ ◡{𝑥})) ∈ V ∧ (𝐺 ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ ∪ ◡{𝑥})) ∈ V)) → ((𝐹 ∘f 𝑅𝐺) ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ ∪ ◡{𝑥})) = ((𝐹 ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ ∪ ◡{𝑥})) ∘f 𝑅(𝐺 ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ ∪ ◡{𝑥})))) | |
16 | 2, 4, 6, 10, 14, 15 | syl23anc 1376 | . 2 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊) → ((𝐹 ∘f 𝑅𝐺) ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ ∪ ◡{𝑥})) = ((𝐹 ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ ∪ ◡{𝑥})) ∘f 𝑅(𝐺 ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ ∪ ◡{𝑥})))) |
17 | dftpos4 8269 | . 2 ⊢ tpos (𝐹 ∘f 𝑅𝐺) = ((𝐹 ∘f 𝑅𝐺) ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ ∪ ◡{𝑥})) | |
18 | 7, 11 | oveq12i 7443 | . 2 ⊢ (tpos 𝐹 ∘f 𝑅tpos 𝐺) = ((𝐹 ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ ∪ ◡{𝑥})) ∘f 𝑅(𝐺 ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ ∪ ◡{𝑥}))) |
19 | 16, 17, 18 | 3eqtr4g 2800 | 1 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊) → tpos (𝐹 ∘f 𝑅𝐺) = (tpos 𝐹 ∘f 𝑅tpos 𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 Vcvv 3478 ∪ cun 3961 ∅c0 4339 {csn 4631 ∪ cuni 4912 ↦ cmpt 5231 × cxp 5687 ◡ccnv 5688 ∘ ccom 5693 Fun wfun 6557 (class class class)co 7431 ∘f cof 7695 tpos ctpos 8249 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-ov 7434 df-oprab 7435 df-mpo 7436 df-of 7697 df-tpos 8250 |
This theorem is referenced by: mattposvs 22477 |
Copyright terms: Public domain | W3C validator |