MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uspgredgiedg Structured version   Visualization version   GIF version

Theorem uspgredgiedg 29210
Description: In a simple pseudograph, for each edge there is exactly one indexed edge. (Contributed by AV, 20-Apr-2025.)
Hypotheses
Ref Expression
uspgredgiedg.e 𝐸 = (Edg‘𝐺)
uspgredgiedg.i 𝐼 = (iEdg‘𝐺)
Assertion
Ref Expression
uspgredgiedg ((𝐺 ∈ USPGraph ∧ 𝐾𝐸) → ∃!𝑥 ∈ dom 𝐼 𝐾 = (𝐼𝑥))
Distinct variable groups:   𝑥,𝐸   𝑥,𝐼   𝑥,𝐾
Allowed substitution hint:   𝐺(𝑥)

Proof of Theorem uspgredgiedg
StepHypRef Expression
1 uspgredgiedg.i . . . . 5 𝐼 = (iEdg‘𝐺)
21uspgrf1oedg 29208 . . . 4 (𝐺 ∈ USPGraph → 𝐼:dom 𝐼1-1-onto→(Edg‘𝐺))
3 uspgredgiedg.e . . . . 5 𝐸 = (Edg‘𝐺)
4 f1oeq3 6852 . . . . 5 (𝐸 = (Edg‘𝐺) → (𝐼:dom 𝐼1-1-onto𝐸𝐼:dom 𝐼1-1-onto→(Edg‘𝐺)))
53, 4ax-mp 5 . . . 4 (𝐼:dom 𝐼1-1-onto𝐸𝐼:dom 𝐼1-1-onto→(Edg‘𝐺))
62, 5sylibr 234 . . 3 (𝐺 ∈ USPGraph → 𝐼:dom 𝐼1-1-onto𝐸)
7 f1ofveu 7442 . . 3 ((𝐼:dom 𝐼1-1-onto𝐸𝐾𝐸) → ∃!𝑥 ∈ dom 𝐼(𝐼𝑥) = 𝐾)
86, 7sylan 579 . 2 ((𝐺 ∈ USPGraph ∧ 𝐾𝐸) → ∃!𝑥 ∈ dom 𝐼(𝐼𝑥) = 𝐾)
9 eqcom 2747 . . 3 (𝐾 = (𝐼𝑥) ↔ (𝐼𝑥) = 𝐾)
109reubii 3397 . 2 (∃!𝑥 ∈ dom 𝐼 𝐾 = (𝐼𝑥) ↔ ∃!𝑥 ∈ dom 𝐼(𝐼𝑥) = 𝐾)
118, 10sylibr 234 1 ((𝐺 ∈ USPGraph ∧ 𝐾𝐸) → ∃!𝑥 ∈ dom 𝐼 𝐾 = (𝐼𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  ∃!wreu 3386  dom cdm 5700  1-1-ontowf1o 6572  cfv 6573  iEdgciedg 29032  Edgcedg 29082  USPGraphcuspgr 29183
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-edg 29083  df-uspgr 29185
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator