MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uspgredgiedg Structured version   Visualization version   GIF version

Theorem uspgredgiedg 29153
Description: In a simple pseudograph, for each edge there is exactly one indexed edge. (Contributed by AV, 20-Apr-2025.)
Hypotheses
Ref Expression
uspgredgiedg.e 𝐸 = (Edg‘𝐺)
uspgredgiedg.i 𝐼 = (iEdg‘𝐺)
Assertion
Ref Expression
uspgredgiedg ((𝐺 ∈ USPGraph ∧ 𝐾𝐸) → ∃!𝑥 ∈ dom 𝐼 𝐾 = (𝐼𝑥))
Distinct variable groups:   𝑥,𝐸   𝑥,𝐼   𝑥,𝐾
Allowed substitution hint:   𝐺(𝑥)

Proof of Theorem uspgredgiedg
StepHypRef Expression
1 uspgredgiedg.i . . . . 5 𝐼 = (iEdg‘𝐺)
21uspgrf1oedg 29151 . . . 4 (𝐺 ∈ USPGraph → 𝐼:dom 𝐼1-1-onto→(Edg‘𝐺))
3 uspgredgiedg.e . . . . 5 𝐸 = (Edg‘𝐺)
4 f1oeq3 6753 . . . . 5 (𝐸 = (Edg‘𝐺) → (𝐼:dom 𝐼1-1-onto𝐸𝐼:dom 𝐼1-1-onto→(Edg‘𝐺)))
53, 4ax-mp 5 . . . 4 (𝐼:dom 𝐼1-1-onto𝐸𝐼:dom 𝐼1-1-onto→(Edg‘𝐺))
62, 5sylibr 234 . . 3 (𝐺 ∈ USPGraph → 𝐼:dom 𝐼1-1-onto𝐸)
7 f1ofveu 7340 . . 3 ((𝐼:dom 𝐼1-1-onto𝐸𝐾𝐸) → ∃!𝑥 ∈ dom 𝐼(𝐼𝑥) = 𝐾)
86, 7sylan 580 . 2 ((𝐺 ∈ USPGraph ∧ 𝐾𝐸) → ∃!𝑥 ∈ dom 𝐼(𝐼𝑥) = 𝐾)
9 eqcom 2738 . . 3 (𝐾 = (𝐼𝑥) ↔ (𝐼𝑥) = 𝐾)
109reubii 3355 . 2 (∃!𝑥 ∈ dom 𝐼 𝐾 = (𝐼𝑥) ↔ ∃!𝑥 ∈ dom 𝐼(𝐼𝑥) = 𝐾)
118, 10sylibr 234 1 ((𝐺 ∈ USPGraph ∧ 𝐾𝐸) → ∃!𝑥 ∈ dom 𝐼 𝐾 = (𝐼𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  ∃!wreu 3344  dom cdm 5614  1-1-ontowf1o 6480  cfv 6481  iEdgciedg 28975  Edgcedg 29025  USPGraphcuspgr 29126
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-edg 29026  df-uspgr 29128
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator