| Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | ||
| Mirrors > Home > MPE Home > Th. List > uspgredgiedg | Structured version Visualization version GIF version | ||
| Description: In a simple pseudograph, for each edge there is exactly one indexed edge. (Contributed by AV, 20-Apr-2025.) | 
| Ref | Expression | 
|---|---|
| uspgredgiedg.e | ⊢ 𝐸 = (Edg‘𝐺) | 
| uspgredgiedg.i | ⊢ 𝐼 = (iEdg‘𝐺) | 
| Ref | Expression | 
|---|---|
| uspgredgiedg | ⊢ ((𝐺 ∈ USPGraph ∧ 𝐾 ∈ 𝐸) → ∃!𝑥 ∈ dom 𝐼 𝐾 = (𝐼‘𝑥)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | uspgredgiedg.i | . . . . 5 ⊢ 𝐼 = (iEdg‘𝐺) | |
| 2 | 1 | uspgrf1oedg 29190 | . . . 4 ⊢ (𝐺 ∈ USPGraph → 𝐼:dom 𝐼–1-1-onto→(Edg‘𝐺)) | 
| 3 | uspgredgiedg.e | . . . . 5 ⊢ 𝐸 = (Edg‘𝐺) | |
| 4 | f1oeq3 6838 | . . . . 5 ⊢ (𝐸 = (Edg‘𝐺) → (𝐼:dom 𝐼–1-1-onto→𝐸 ↔ 𝐼:dom 𝐼–1-1-onto→(Edg‘𝐺))) | |
| 5 | 3, 4 | ax-mp 5 | . . . 4 ⊢ (𝐼:dom 𝐼–1-1-onto→𝐸 ↔ 𝐼:dom 𝐼–1-1-onto→(Edg‘𝐺)) | 
| 6 | 2, 5 | sylibr 234 | . . 3 ⊢ (𝐺 ∈ USPGraph → 𝐼:dom 𝐼–1-1-onto→𝐸) | 
| 7 | f1ofveu 7425 | . . 3 ⊢ ((𝐼:dom 𝐼–1-1-onto→𝐸 ∧ 𝐾 ∈ 𝐸) → ∃!𝑥 ∈ dom 𝐼(𝐼‘𝑥) = 𝐾) | |
| 8 | 6, 7 | sylan 580 | . 2 ⊢ ((𝐺 ∈ USPGraph ∧ 𝐾 ∈ 𝐸) → ∃!𝑥 ∈ dom 𝐼(𝐼‘𝑥) = 𝐾) | 
| 9 | eqcom 2744 | . . 3 ⊢ (𝐾 = (𝐼‘𝑥) ↔ (𝐼‘𝑥) = 𝐾) | |
| 10 | 9 | reubii 3389 | . 2 ⊢ (∃!𝑥 ∈ dom 𝐼 𝐾 = (𝐼‘𝑥) ↔ ∃!𝑥 ∈ dom 𝐼(𝐼‘𝑥) = 𝐾) | 
| 11 | 8, 10 | sylibr 234 | 1 ⊢ ((𝐺 ∈ USPGraph ∧ 𝐾 ∈ 𝐸) → ∃!𝑥 ∈ dom 𝐼 𝐾 = (𝐼‘𝑥)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∃!wreu 3378 dom cdm 5685 –1-1-onto→wf1o 6560 ‘cfv 6561 iEdgciedg 29014 Edgcedg 29064 USPGraphcuspgr 29165 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 ax-un 7755 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-edg 29065 df-uspgr 29167 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |