MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uspgredgiedg Structured version   Visualization version   GIF version

Theorem uspgredgiedg 29159
Description: In a simple pseudograph, for each edge there is exactly one indexed edge. (Contributed by AV, 20-Apr-2025.)
Hypotheses
Ref Expression
uspgredgiedg.e 𝐸 = (Edg‘𝐺)
uspgredgiedg.i 𝐼 = (iEdg‘𝐺)
Assertion
Ref Expression
uspgredgiedg ((𝐺 ∈ USPGraph ∧ 𝐾𝐸) → ∃!𝑥 ∈ dom 𝐼 𝐾 = (𝐼𝑥))
Distinct variable groups:   𝑥,𝐸   𝑥,𝐼   𝑥,𝐾
Allowed substitution hint:   𝐺(𝑥)

Proof of Theorem uspgredgiedg
StepHypRef Expression
1 uspgredgiedg.i . . . . 5 𝐼 = (iEdg‘𝐺)
21uspgrf1oedg 29157 . . . 4 (𝐺 ∈ USPGraph → 𝐼:dom 𝐼1-1-onto→(Edg‘𝐺))
3 uspgredgiedg.e . . . . 5 𝐸 = (Edg‘𝐺)
4 f1oeq3 6813 . . . . 5 (𝐸 = (Edg‘𝐺) → (𝐼:dom 𝐼1-1-onto𝐸𝐼:dom 𝐼1-1-onto→(Edg‘𝐺)))
53, 4ax-mp 5 . . . 4 (𝐼:dom 𝐼1-1-onto𝐸𝐼:dom 𝐼1-1-onto→(Edg‘𝐺))
62, 5sylibr 234 . . 3 (𝐺 ∈ USPGraph → 𝐼:dom 𝐼1-1-onto𝐸)
7 f1ofveu 7404 . . 3 ((𝐼:dom 𝐼1-1-onto𝐸𝐾𝐸) → ∃!𝑥 ∈ dom 𝐼(𝐼𝑥) = 𝐾)
86, 7sylan 580 . 2 ((𝐺 ∈ USPGraph ∧ 𝐾𝐸) → ∃!𝑥 ∈ dom 𝐼(𝐼𝑥) = 𝐾)
9 eqcom 2743 . . 3 (𝐾 = (𝐼𝑥) ↔ (𝐼𝑥) = 𝐾)
109reubii 3373 . 2 (∃!𝑥 ∈ dom 𝐼 𝐾 = (𝐼𝑥) ↔ ∃!𝑥 ∈ dom 𝐼(𝐼𝑥) = 𝐾)
118, 10sylibr 234 1 ((𝐺 ∈ USPGraph ∧ 𝐾𝐸) → ∃!𝑥 ∈ dom 𝐼 𝐾 = (𝐼𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  ∃!wreu 3362  dom cdm 5659  1-1-ontowf1o 6535  cfv 6536  iEdgciedg 28981  Edgcedg 29031  USPGraphcuspgr 29132
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-edg 29032  df-uspgr 29134
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator