Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nbgrsym | Structured version Visualization version GIF version |
Description: In a graph, the neighborhood relation is symmetric: a vertex 𝑁 in a graph 𝐺 is a neighbor of a second vertex 𝐾 iff the second vertex 𝐾 is a neighbor of the first vertex 𝑁. (Contributed by Alexander van der Vekens, 12-Oct-2017.) (Revised by AV, 27-Oct-2020.) (Revised by AV, 12-Feb-2022.) |
Ref | Expression |
---|---|
nbgrsym | ⊢ (𝑁 ∈ (𝐺 NeighbVtx 𝐾) ↔ 𝐾 ∈ (𝐺 NeighbVtx 𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ancom 460 | . . 3 ⊢ ((𝑁 ∈ (Vtx‘𝐺) ∧ 𝐾 ∈ (Vtx‘𝐺)) ↔ (𝐾 ∈ (Vtx‘𝐺) ∧ 𝑁 ∈ (Vtx‘𝐺))) | |
2 | necom 2996 | . . 3 ⊢ (𝑁 ≠ 𝐾 ↔ 𝐾 ≠ 𝑁) | |
3 | prcom 4665 | . . . . 5 ⊢ {𝐾, 𝑁} = {𝑁, 𝐾} | |
4 | 3 | sseq1i 3945 | . . . 4 ⊢ ({𝐾, 𝑁} ⊆ 𝑒 ↔ {𝑁, 𝐾} ⊆ 𝑒) |
5 | 4 | rexbii 3177 | . . 3 ⊢ (∃𝑒 ∈ (Edg‘𝐺){𝐾, 𝑁} ⊆ 𝑒 ↔ ∃𝑒 ∈ (Edg‘𝐺){𝑁, 𝐾} ⊆ 𝑒) |
6 | 1, 2, 5 | 3anbi123i 1153 | . 2 ⊢ (((𝑁 ∈ (Vtx‘𝐺) ∧ 𝐾 ∈ (Vtx‘𝐺)) ∧ 𝑁 ≠ 𝐾 ∧ ∃𝑒 ∈ (Edg‘𝐺){𝐾, 𝑁} ⊆ 𝑒) ↔ ((𝐾 ∈ (Vtx‘𝐺) ∧ 𝑁 ∈ (Vtx‘𝐺)) ∧ 𝐾 ≠ 𝑁 ∧ ∃𝑒 ∈ (Edg‘𝐺){𝑁, 𝐾} ⊆ 𝑒)) |
7 | eqid 2738 | . . 3 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
8 | eqid 2738 | . . 3 ⊢ (Edg‘𝐺) = (Edg‘𝐺) | |
9 | 7, 8 | nbgrel 27610 | . 2 ⊢ (𝑁 ∈ (𝐺 NeighbVtx 𝐾) ↔ ((𝑁 ∈ (Vtx‘𝐺) ∧ 𝐾 ∈ (Vtx‘𝐺)) ∧ 𝑁 ≠ 𝐾 ∧ ∃𝑒 ∈ (Edg‘𝐺){𝐾, 𝑁} ⊆ 𝑒)) |
10 | 7, 8 | nbgrel 27610 | . 2 ⊢ (𝐾 ∈ (𝐺 NeighbVtx 𝑁) ↔ ((𝐾 ∈ (Vtx‘𝐺) ∧ 𝑁 ∈ (Vtx‘𝐺)) ∧ 𝐾 ≠ 𝑁 ∧ ∃𝑒 ∈ (Edg‘𝐺){𝑁, 𝐾} ⊆ 𝑒)) |
11 | 6, 9, 10 | 3bitr4i 302 | 1 ⊢ (𝑁 ∈ (𝐺 NeighbVtx 𝐾) ↔ 𝐾 ∈ (𝐺 NeighbVtx 𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 ∧ w3a 1085 ∈ wcel 2108 ≠ wne 2942 ∃wrex 3064 ⊆ wss 3883 {cpr 4560 ‘cfv 6418 (class class class)co 7255 Vtxcvtx 27269 Edgcedg 27320 NeighbVtx cnbgr 27602 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-1st 7804 df-2nd 7805 df-nbgr 27603 |
This theorem is referenced by: nbusgredgeu0 27638 uvtxnbgrvtx 27663 cplgr3v 27705 frgrncvvdeqlem1 28564 frgrwopreglem4a 28575 numclwwlk1lem2foa 28619 |
Copyright terms: Public domain | W3C validator |