MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nbgrsym Structured version   Visualization version   GIF version

Theorem nbgrsym 29362
Description: In a graph, the neighborhood relation is symmetric: a vertex 𝑁 in a graph 𝐺 is a neighbor of a second vertex 𝐾 iff the second vertex 𝐾 is a neighbor of the first vertex 𝑁. (Contributed by Alexander van der Vekens, 12-Oct-2017.) (Revised by AV, 27-Oct-2020.) (Revised by AV, 12-Feb-2022.)
Assertion
Ref Expression
nbgrsym (𝑁 ∈ (𝐺 NeighbVtx 𝐾) ↔ 𝐾 ∈ (𝐺 NeighbVtx 𝑁))

Proof of Theorem nbgrsym
Dummy variable 𝑒 is distinct from all other variables.
StepHypRef Expression
1 ancom 460 . . 3 ((𝑁 ∈ (Vtx‘𝐺) ∧ 𝐾 ∈ (Vtx‘𝐺)) ↔ (𝐾 ∈ (Vtx‘𝐺) ∧ 𝑁 ∈ (Vtx‘𝐺)))
2 necom 2982 . . 3 (𝑁𝐾𝐾𝑁)
3 prcom 4686 . . . . 5 {𝐾, 𝑁} = {𝑁, 𝐾}
43sseq1i 3959 . . . 4 ({𝐾, 𝑁} ⊆ 𝑒 ↔ {𝑁, 𝐾} ⊆ 𝑒)
54rexbii 3080 . . 3 (∃𝑒 ∈ (Edg‘𝐺){𝐾, 𝑁} ⊆ 𝑒 ↔ ∃𝑒 ∈ (Edg‘𝐺){𝑁, 𝐾} ⊆ 𝑒)
61, 2, 53anbi123i 1155 . 2 (((𝑁 ∈ (Vtx‘𝐺) ∧ 𝐾 ∈ (Vtx‘𝐺)) ∧ 𝑁𝐾 ∧ ∃𝑒 ∈ (Edg‘𝐺){𝐾, 𝑁} ⊆ 𝑒) ↔ ((𝐾 ∈ (Vtx‘𝐺) ∧ 𝑁 ∈ (Vtx‘𝐺)) ∧ 𝐾𝑁 ∧ ∃𝑒 ∈ (Edg‘𝐺){𝑁, 𝐾} ⊆ 𝑒))
7 eqid 2733 . . 3 (Vtx‘𝐺) = (Vtx‘𝐺)
8 eqid 2733 . . 3 (Edg‘𝐺) = (Edg‘𝐺)
97, 8nbgrel 29339 . 2 (𝑁 ∈ (𝐺 NeighbVtx 𝐾) ↔ ((𝑁 ∈ (Vtx‘𝐺) ∧ 𝐾 ∈ (Vtx‘𝐺)) ∧ 𝑁𝐾 ∧ ∃𝑒 ∈ (Edg‘𝐺){𝐾, 𝑁} ⊆ 𝑒))
107, 8nbgrel 29339 . 2 (𝐾 ∈ (𝐺 NeighbVtx 𝑁) ↔ ((𝐾 ∈ (Vtx‘𝐺) ∧ 𝑁 ∈ (Vtx‘𝐺)) ∧ 𝐾𝑁 ∧ ∃𝑒 ∈ (Edg‘𝐺){𝑁, 𝐾} ⊆ 𝑒))
116, 9, 103bitr4i 303 1 (𝑁 ∈ (𝐺 NeighbVtx 𝐾) ↔ 𝐾 ∈ (𝐺 NeighbVtx 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1086  wcel 2113  wne 2929  wrex 3057  wss 3898  {cpr 4579  cfv 6489  (class class class)co 7355  Vtxcvtx 28995  Edgcedg 29046   NeighbVtx cnbgr 29331
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6445  df-fun 6491  df-fv 6497  df-ov 7358  df-oprab 7359  df-mpo 7360  df-1st 7930  df-2nd 7931  df-nbgr 29332
This theorem is referenced by:  nbusgredgeu0  29367  uvtxnbgrvtx  29392  cplgr3v  29434  frgrncvvdeqlem1  30300  frgrwopreglem4a  30311  numclwwlk1lem2foa  30355
  Copyright terms: Public domain W3C validator