| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nbgrsym | Structured version Visualization version GIF version | ||
| Description: In a graph, the neighborhood relation is symmetric: a vertex 𝑁 in a graph 𝐺 is a neighbor of a second vertex 𝐾 iff the second vertex 𝐾 is a neighbor of the first vertex 𝑁. (Contributed by Alexander van der Vekens, 12-Oct-2017.) (Revised by AV, 27-Oct-2020.) (Revised by AV, 12-Feb-2022.) |
| Ref | Expression |
|---|---|
| nbgrsym | ⊢ (𝑁 ∈ (𝐺 NeighbVtx 𝐾) ↔ 𝐾 ∈ (𝐺 NeighbVtx 𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ancom 460 | . . 3 ⊢ ((𝑁 ∈ (Vtx‘𝐺) ∧ 𝐾 ∈ (Vtx‘𝐺)) ↔ (𝐾 ∈ (Vtx‘𝐺) ∧ 𝑁 ∈ (Vtx‘𝐺))) | |
| 2 | necom 2982 | . . 3 ⊢ (𝑁 ≠ 𝐾 ↔ 𝐾 ≠ 𝑁) | |
| 3 | prcom 4686 | . . . . 5 ⊢ {𝐾, 𝑁} = {𝑁, 𝐾} | |
| 4 | 3 | sseq1i 3959 | . . . 4 ⊢ ({𝐾, 𝑁} ⊆ 𝑒 ↔ {𝑁, 𝐾} ⊆ 𝑒) |
| 5 | 4 | rexbii 3080 | . . 3 ⊢ (∃𝑒 ∈ (Edg‘𝐺){𝐾, 𝑁} ⊆ 𝑒 ↔ ∃𝑒 ∈ (Edg‘𝐺){𝑁, 𝐾} ⊆ 𝑒) |
| 6 | 1, 2, 5 | 3anbi123i 1155 | . 2 ⊢ (((𝑁 ∈ (Vtx‘𝐺) ∧ 𝐾 ∈ (Vtx‘𝐺)) ∧ 𝑁 ≠ 𝐾 ∧ ∃𝑒 ∈ (Edg‘𝐺){𝐾, 𝑁} ⊆ 𝑒) ↔ ((𝐾 ∈ (Vtx‘𝐺) ∧ 𝑁 ∈ (Vtx‘𝐺)) ∧ 𝐾 ≠ 𝑁 ∧ ∃𝑒 ∈ (Edg‘𝐺){𝑁, 𝐾} ⊆ 𝑒)) |
| 7 | eqid 2733 | . . 3 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
| 8 | eqid 2733 | . . 3 ⊢ (Edg‘𝐺) = (Edg‘𝐺) | |
| 9 | 7, 8 | nbgrel 29339 | . 2 ⊢ (𝑁 ∈ (𝐺 NeighbVtx 𝐾) ↔ ((𝑁 ∈ (Vtx‘𝐺) ∧ 𝐾 ∈ (Vtx‘𝐺)) ∧ 𝑁 ≠ 𝐾 ∧ ∃𝑒 ∈ (Edg‘𝐺){𝐾, 𝑁} ⊆ 𝑒)) |
| 10 | 7, 8 | nbgrel 29339 | . 2 ⊢ (𝐾 ∈ (𝐺 NeighbVtx 𝑁) ↔ ((𝐾 ∈ (Vtx‘𝐺) ∧ 𝑁 ∈ (Vtx‘𝐺)) ∧ 𝐾 ≠ 𝑁 ∧ ∃𝑒 ∈ (Edg‘𝐺){𝑁, 𝐾} ⊆ 𝑒)) |
| 11 | 6, 9, 10 | 3bitr4i 303 | 1 ⊢ (𝑁 ∈ (𝐺 NeighbVtx 𝐾) ↔ 𝐾 ∈ (𝐺 NeighbVtx 𝑁)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2113 ≠ wne 2929 ∃wrex 3057 ⊆ wss 3898 {cpr 4579 ‘cfv 6489 (class class class)co 7355 Vtxcvtx 28995 Edgcedg 29046 NeighbVtx cnbgr 29331 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fun 6491 df-fv 6497 df-ov 7358 df-oprab 7359 df-mpo 7360 df-1st 7930 df-2nd 7931 df-nbgr 29332 |
| This theorem is referenced by: nbusgredgeu0 29367 uvtxnbgrvtx 29392 cplgr3v 29434 frgrncvvdeqlem1 30300 frgrwopreglem4a 30311 numclwwlk1lem2foa 30355 |
| Copyright terms: Public domain | W3C validator |