Step | Hyp | Ref
| Expression |
1 | | vciOLD.1 |
. . . . . 6
⊢ 𝐺 = (1st ‘𝑊) |
2 | | vciOLD.2 |
. . . . . 6
⊢ 𝑆 = (2nd ‘𝑊) |
3 | | vciOLD.3 |
. . . . . 6
⊢ 𝑋 = ran 𝐺 |
4 | 1, 2, 3 | vciOLD 28824 |
. . . . 5
⊢ (𝑊 ∈ CVecOLD
→ (𝐺 ∈ AbelOp
∧ 𝑆:(ℂ ×
𝑋)⟶𝑋 ∧ ∀𝑥 ∈ 𝑋 ((1𝑆𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧 ∈ 𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥))))))) |
5 | | simpr 484 |
. . . . . . . . . . 11
⊢ ((((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥))) → ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥))) |
6 | 5 | ralimi 3086 |
. . . . . . . . . 10
⊢
(∀𝑧 ∈
ℂ (((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥))) → ∀𝑧 ∈ ℂ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥))) |
7 | 6 | adantl 481 |
. . . . . . . . 9
⊢
((∀𝑧 ∈
𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥)))) → ∀𝑧 ∈ ℂ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥))) |
8 | 7 | ralimi 3086 |
. . . . . . . 8
⊢
(∀𝑦 ∈
ℂ (∀𝑧 ∈
𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥)))) → ∀𝑦 ∈ ℂ ∀𝑧 ∈ ℂ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥))) |
9 | 8 | adantl 481 |
. . . . . . 7
⊢ (((1𝑆𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧 ∈ 𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥))))) → ∀𝑦 ∈ ℂ ∀𝑧 ∈ ℂ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥))) |
10 | 9 | ralimi 3086 |
. . . . . 6
⊢
(∀𝑥 ∈
𝑋 ((1𝑆𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧 ∈ 𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥))))) → ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ ℂ ∀𝑧 ∈ ℂ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥))) |
11 | 10 | 3ad2ant3 1133 |
. . . . 5
⊢ ((𝐺 ∈ AbelOp ∧ 𝑆:(ℂ × 𝑋)⟶𝑋 ∧ ∀𝑥 ∈ 𝑋 ((1𝑆𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧 ∈ 𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥)))))) → ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ ℂ ∀𝑧 ∈ ℂ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥))) |
12 | 4, 11 | syl 17 |
. . . 4
⊢ (𝑊 ∈ CVecOLD
→ ∀𝑥 ∈
𝑋 ∀𝑦 ∈ ℂ ∀𝑧 ∈ ℂ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥))) |
13 | | oveq2 7263 |
. . . . . 6
⊢ (𝑥 = 𝐶 → ((𝑦 · 𝑧)𝑆𝑥) = ((𝑦 · 𝑧)𝑆𝐶)) |
14 | | oveq2 7263 |
. . . . . . 7
⊢ (𝑥 = 𝐶 → (𝑧𝑆𝑥) = (𝑧𝑆𝐶)) |
15 | 14 | oveq2d 7271 |
. . . . . 6
⊢ (𝑥 = 𝐶 → (𝑦𝑆(𝑧𝑆𝑥)) = (𝑦𝑆(𝑧𝑆𝐶))) |
16 | 13, 15 | eqeq12d 2754 |
. . . . 5
⊢ (𝑥 = 𝐶 → (((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥)) ↔ ((𝑦 · 𝑧)𝑆𝐶) = (𝑦𝑆(𝑧𝑆𝐶)))) |
17 | | oveq1 7262 |
. . . . . . 7
⊢ (𝑦 = 𝐴 → (𝑦 · 𝑧) = (𝐴 · 𝑧)) |
18 | 17 | oveq1d 7270 |
. . . . . 6
⊢ (𝑦 = 𝐴 → ((𝑦 · 𝑧)𝑆𝐶) = ((𝐴 · 𝑧)𝑆𝐶)) |
19 | | oveq1 7262 |
. . . . . 6
⊢ (𝑦 = 𝐴 → (𝑦𝑆(𝑧𝑆𝐶)) = (𝐴𝑆(𝑧𝑆𝐶))) |
20 | 18, 19 | eqeq12d 2754 |
. . . . 5
⊢ (𝑦 = 𝐴 → (((𝑦 · 𝑧)𝑆𝐶) = (𝑦𝑆(𝑧𝑆𝐶)) ↔ ((𝐴 · 𝑧)𝑆𝐶) = (𝐴𝑆(𝑧𝑆𝐶)))) |
21 | | oveq2 7263 |
. . . . . . 7
⊢ (𝑧 = 𝐵 → (𝐴 · 𝑧) = (𝐴 · 𝐵)) |
22 | 21 | oveq1d 7270 |
. . . . . 6
⊢ (𝑧 = 𝐵 → ((𝐴 · 𝑧)𝑆𝐶) = ((𝐴 · 𝐵)𝑆𝐶)) |
23 | | oveq1 7262 |
. . . . . . 7
⊢ (𝑧 = 𝐵 → (𝑧𝑆𝐶) = (𝐵𝑆𝐶)) |
24 | 23 | oveq2d 7271 |
. . . . . 6
⊢ (𝑧 = 𝐵 → (𝐴𝑆(𝑧𝑆𝐶)) = (𝐴𝑆(𝐵𝑆𝐶))) |
25 | 22, 24 | eqeq12d 2754 |
. . . . 5
⊢ (𝑧 = 𝐵 → (((𝐴 · 𝑧)𝑆𝐶) = (𝐴𝑆(𝑧𝑆𝐶)) ↔ ((𝐴 · 𝐵)𝑆𝐶) = (𝐴𝑆(𝐵𝑆𝐶)))) |
26 | 16, 20, 25 | rspc3v 3565 |
. . . 4
⊢ ((𝐶 ∈ 𝑋 ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (∀𝑥 ∈ 𝑋 ∀𝑦 ∈ ℂ ∀𝑧 ∈ ℂ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥)) → ((𝐴 · 𝐵)𝑆𝐶) = (𝐴𝑆(𝐵𝑆𝐶)))) |
27 | 12, 26 | syl5 34 |
. . 3
⊢ ((𝐶 ∈ 𝑋 ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝑊 ∈ CVecOLD → ((𝐴 · 𝐵)𝑆𝐶) = (𝐴𝑆(𝐵𝑆𝐶)))) |
28 | 27 | 3coml 1125 |
. 2
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ 𝑋) → (𝑊 ∈ CVecOLD → ((𝐴 · 𝐵)𝑆𝐶) = (𝐴𝑆(𝐵𝑆𝐶)))) |
29 | 28 | impcom 407 |
1
⊢ ((𝑊 ∈ CVecOLD ∧
(𝐴 ∈ ℂ ∧
𝐵 ∈ ℂ ∧
𝐶 ∈ 𝑋)) → ((𝐴 · 𝐵)𝑆𝐶) = (𝐴𝑆(𝐵𝑆𝐶))) |