MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vcass Structured version   Visualization version   GIF version

Theorem vcass 30547
Description: Associative law for the scalar product of a complex vector space. (Contributed by NM, 3-Nov-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
vciOLD.1 𝐺 = (1st𝑊)
vciOLD.2 𝑆 = (2nd𝑊)
vciOLD.3 𝑋 = ran 𝐺
Assertion
Ref Expression
vcass ((𝑊 ∈ CVecOLD ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶𝑋)) → ((𝐴 · 𝐵)𝑆𝐶) = (𝐴𝑆(𝐵𝑆𝐶)))

Proof of Theorem vcass
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vciOLD.1 . . . . . 6 𝐺 = (1st𝑊)
2 vciOLD.2 . . . . . 6 𝑆 = (2nd𝑊)
3 vciOLD.3 . . . . . 6 𝑋 = ran 𝐺
41, 2, 3vciOLD 30541 . . . . 5 (𝑊 ∈ CVecOLD → (𝐺 ∈ AbelOp ∧ 𝑆:(ℂ × 𝑋)⟶𝑋 ∧ ∀𝑥𝑋 ((1𝑆𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥)))))))
5 simpr 484 . . . . . . . . . . 11 ((((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥))) → ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥)))
65ralimi 3069 . . . . . . . . . 10 (∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥))) → ∀𝑧 ∈ ℂ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥)))
76adantl 481 . . . . . . . . 9 ((∀𝑧𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥)))) → ∀𝑧 ∈ ℂ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥)))
87ralimi 3069 . . . . . . . 8 (∀𝑦 ∈ ℂ (∀𝑧𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥)))) → ∀𝑦 ∈ ℂ ∀𝑧 ∈ ℂ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥)))
98adantl 481 . . . . . . 7 (((1𝑆𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥))))) → ∀𝑦 ∈ ℂ ∀𝑧 ∈ ℂ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥)))
109ralimi 3069 . . . . . 6 (∀𝑥𝑋 ((1𝑆𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥))))) → ∀𝑥𝑋𝑦 ∈ ℂ ∀𝑧 ∈ ℂ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥)))
11103ad2ant3 1135 . . . . 5 ((𝐺 ∈ AbelOp ∧ 𝑆:(ℂ × 𝑋)⟶𝑋 ∧ ∀𝑥𝑋 ((1𝑆𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥)))))) → ∀𝑥𝑋𝑦 ∈ ℂ ∀𝑧 ∈ ℂ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥)))
124, 11syl 17 . . . 4 (𝑊 ∈ CVecOLD → ∀𝑥𝑋𝑦 ∈ ℂ ∀𝑧 ∈ ℂ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥)))
13 oveq2 7354 . . . . . 6 (𝑥 = 𝐶 → ((𝑦 · 𝑧)𝑆𝑥) = ((𝑦 · 𝑧)𝑆𝐶))
14 oveq2 7354 . . . . . . 7 (𝑥 = 𝐶 → (𝑧𝑆𝑥) = (𝑧𝑆𝐶))
1514oveq2d 7362 . . . . . 6 (𝑥 = 𝐶 → (𝑦𝑆(𝑧𝑆𝑥)) = (𝑦𝑆(𝑧𝑆𝐶)))
1613, 15eqeq12d 2747 . . . . 5 (𝑥 = 𝐶 → (((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥)) ↔ ((𝑦 · 𝑧)𝑆𝐶) = (𝑦𝑆(𝑧𝑆𝐶))))
17 oveq1 7353 . . . . . . 7 (𝑦 = 𝐴 → (𝑦 · 𝑧) = (𝐴 · 𝑧))
1817oveq1d 7361 . . . . . 6 (𝑦 = 𝐴 → ((𝑦 · 𝑧)𝑆𝐶) = ((𝐴 · 𝑧)𝑆𝐶))
19 oveq1 7353 . . . . . 6 (𝑦 = 𝐴 → (𝑦𝑆(𝑧𝑆𝐶)) = (𝐴𝑆(𝑧𝑆𝐶)))
2018, 19eqeq12d 2747 . . . . 5 (𝑦 = 𝐴 → (((𝑦 · 𝑧)𝑆𝐶) = (𝑦𝑆(𝑧𝑆𝐶)) ↔ ((𝐴 · 𝑧)𝑆𝐶) = (𝐴𝑆(𝑧𝑆𝐶))))
21 oveq2 7354 . . . . . . 7 (𝑧 = 𝐵 → (𝐴 · 𝑧) = (𝐴 · 𝐵))
2221oveq1d 7361 . . . . . 6 (𝑧 = 𝐵 → ((𝐴 · 𝑧)𝑆𝐶) = ((𝐴 · 𝐵)𝑆𝐶))
23 oveq1 7353 . . . . . . 7 (𝑧 = 𝐵 → (𝑧𝑆𝐶) = (𝐵𝑆𝐶))
2423oveq2d 7362 . . . . . 6 (𝑧 = 𝐵 → (𝐴𝑆(𝑧𝑆𝐶)) = (𝐴𝑆(𝐵𝑆𝐶)))
2522, 24eqeq12d 2747 . . . . 5 (𝑧 = 𝐵 → (((𝐴 · 𝑧)𝑆𝐶) = (𝐴𝑆(𝑧𝑆𝐶)) ↔ ((𝐴 · 𝐵)𝑆𝐶) = (𝐴𝑆(𝐵𝑆𝐶))))
2616, 20, 25rspc3v 3588 . . . 4 ((𝐶𝑋𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (∀𝑥𝑋𝑦 ∈ ℂ ∀𝑧 ∈ ℂ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥)) → ((𝐴 · 𝐵)𝑆𝐶) = (𝐴𝑆(𝐵𝑆𝐶))))
2712, 26syl5 34 . . 3 ((𝐶𝑋𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝑊 ∈ CVecOLD → ((𝐴 · 𝐵)𝑆𝐶) = (𝐴𝑆(𝐵𝑆𝐶))))
28273coml 1127 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶𝑋) → (𝑊 ∈ CVecOLD → ((𝐴 · 𝐵)𝑆𝐶) = (𝐴𝑆(𝐵𝑆𝐶))))
2928impcom 407 1 ((𝑊 ∈ CVecOLD ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶𝑋)) → ((𝐴 · 𝐵)𝑆𝐶) = (𝐴𝑆(𝐵𝑆𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  wral 3047   × cxp 5612  ran crn 5615  wf 6477  cfv 6481  (class class class)co 7346  1st c1st 7919  2nd c2nd 7920  cc 11004  1c1 11007   + caddc 11009   · cmul 11011  AbelOpcablo 30524  CVecOLDcvc 30538
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-fv 6489  df-ov 7349  df-1st 7921  df-2nd 7922  df-vc 30539
This theorem is referenced by:  vcz  30555  nvsass  30608
  Copyright terms: Public domain W3C validator