| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nv2 | Structured version Visualization version GIF version | ||
| Description: A vector plus itself is two times the vector. (Contributed by NM, 9-Feb-2008.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| nvdi.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
| nvdi.2 | ⊢ 𝐺 = ( +𝑣 ‘𝑈) |
| nvdi.4 | ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) |
| Ref | Expression |
|---|---|
| nv2 | ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (𝐴𝐺𝐴) = (2𝑆𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . . 3 ⊢ (1st ‘𝑈) = (1st ‘𝑈) | |
| 2 | 1 | nvvc 30602 | . 2 ⊢ (𝑈 ∈ NrmCVec → (1st ‘𝑈) ∈ CVecOLD) |
| 3 | nvdi.2 | . . . 4 ⊢ 𝐺 = ( +𝑣 ‘𝑈) | |
| 4 | 3 | vafval 30590 | . . 3 ⊢ 𝐺 = (1st ‘(1st ‘𝑈)) |
| 5 | nvdi.4 | . . . 4 ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) | |
| 6 | 5 | smfval 30592 | . . 3 ⊢ 𝑆 = (2nd ‘(1st ‘𝑈)) |
| 7 | nvdi.1 | . . . 4 ⊢ 𝑋 = (BaseSet‘𝑈) | |
| 8 | 7, 3 | bafval 30591 | . . 3 ⊢ 𝑋 = ran 𝐺 |
| 9 | 4, 6, 8 | vc2OLD 30555 | . 2 ⊢ (((1st ‘𝑈) ∈ CVecOLD ∧ 𝐴 ∈ 𝑋) → (𝐴𝐺𝐴) = (2𝑆𝐴)) |
| 10 | 2, 9 | sylan 580 | 1 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (𝐴𝐺𝐴) = (2𝑆𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ‘cfv 6487 (class class class)co 7352 1st c1st 7925 2c2 12186 CVecOLDcvc 30545 NrmCVeccnv 30571 +𝑣 cpv 30572 BaseSetcba 30573 ·𝑠OLD cns 30574 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pr 5372 ax-un 7674 ax-1cn 11070 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6443 df-fun 6489 df-fn 6490 df-f 6491 df-f1 6492 df-fo 6493 df-f1o 6494 df-fv 6495 df-ov 7355 df-oprab 7356 df-1st 7927 df-2nd 7928 df-2 12194 df-vc 30546 df-nv 30579 df-va 30582 df-ba 30583 df-sm 30584 df-0v 30585 df-nmcv 30587 |
| This theorem is referenced by: ipidsq 30697 minvecolem2 30862 |
| Copyright terms: Public domain | W3C validator |