MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nv2 Structured version   Visualization version   GIF version

Theorem nv2 30677
Description: A vector plus itself is two times the vector. (Contributed by NM, 9-Feb-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
nvdi.1 𝑋 = (BaseSet‘𝑈)
nvdi.2 𝐺 = ( +𝑣𝑈)
nvdi.4 𝑆 = ( ·𝑠OLD𝑈)
Assertion
Ref Expression
nv2 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝐴𝐺𝐴) = (2𝑆𝐴))

Proof of Theorem nv2
StepHypRef Expression
1 eqid 2737 . . 3 (1st𝑈) = (1st𝑈)
21nvvc 30660 . 2 (𝑈 ∈ NrmCVec → (1st𝑈) ∈ CVecOLD)
3 nvdi.2 . . . 4 𝐺 = ( +𝑣𝑈)
43vafval 30648 . . 3 𝐺 = (1st ‘(1st𝑈))
5 nvdi.4 . . . 4 𝑆 = ( ·𝑠OLD𝑈)
65smfval 30650 . . 3 𝑆 = (2nd ‘(1st𝑈))
7 nvdi.1 . . . 4 𝑋 = (BaseSet‘𝑈)
87, 3bafval 30649 . . 3 𝑋 = ran 𝐺
94, 6, 8vc2OLD 30613 . 2 (((1st𝑈) ∈ CVecOLD𝐴𝑋) → (𝐴𝐺𝐴) = (2𝑆𝐴))
102, 9sylan 580 1 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝐴𝐺𝐴) = (2𝑆𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  cfv 6569  (class class class)co 7438  1st c1st 8020  2c2 12328  CVecOLDcvc 30603  NrmCVeccnv 30629   +𝑣 cpv 30630  BaseSetcba 30631   ·𝑠OLD cns 30632
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5288  ax-sep 5305  ax-nul 5315  ax-pr 5441  ax-un 7761  ax-1cn 11220
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3483  df-sbc 3795  df-csb 3912  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-nul 4343  df-if 4535  df-sn 4635  df-pr 4637  df-op 4641  df-uni 4916  df-iun 5001  df-br 5152  df-opab 5214  df-mpt 5235  df-id 5587  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702  df-dm 5703  df-rn 5704  df-res 5705  df-ima 5706  df-iota 6522  df-fun 6571  df-fn 6572  df-f 6573  df-f1 6574  df-fo 6575  df-f1o 6576  df-fv 6577  df-ov 7441  df-oprab 7442  df-1st 8022  df-2nd 8023  df-2 12336  df-vc 30604  df-nv 30637  df-va 30640  df-ba 30641  df-sm 30642  df-0v 30643  df-nmcv 30645
This theorem is referenced by:  ipidsq  30755  minvecolem2  30920
  Copyright terms: Public domain W3C validator