![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nv2 | Structured version Visualization version GIF version |
Description: A vector plus itself is two times the vector. (Contributed by NM, 9-Feb-2008.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nvdi.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
nvdi.2 | ⊢ 𝐺 = ( +𝑣 ‘𝑈) |
nvdi.4 | ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) |
Ref | Expression |
---|---|
nv2 | ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (𝐴𝐺𝐴) = (2𝑆𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2733 | . . 3 ⊢ (1st ‘𝑈) = (1st ‘𝑈) | |
2 | 1 | nvvc 29856 | . 2 ⊢ (𝑈 ∈ NrmCVec → (1st ‘𝑈) ∈ CVecOLD) |
3 | nvdi.2 | . . . 4 ⊢ 𝐺 = ( +𝑣 ‘𝑈) | |
4 | 3 | vafval 29844 | . . 3 ⊢ 𝐺 = (1st ‘(1st ‘𝑈)) |
5 | nvdi.4 | . . . 4 ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) | |
6 | 5 | smfval 29846 | . . 3 ⊢ 𝑆 = (2nd ‘(1st ‘𝑈)) |
7 | nvdi.1 | . . . 4 ⊢ 𝑋 = (BaseSet‘𝑈) | |
8 | 7, 3 | bafval 29845 | . . 3 ⊢ 𝑋 = ran 𝐺 |
9 | 4, 6, 8 | vc2OLD 29809 | . 2 ⊢ (((1st ‘𝑈) ∈ CVecOLD ∧ 𝐴 ∈ 𝑋) → (𝐴𝐺𝐴) = (2𝑆𝐴)) |
10 | 2, 9 | sylan 581 | 1 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (𝐴𝐺𝐴) = (2𝑆𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ‘cfv 6541 (class class class)co 7406 1st c1st 7970 2c2 12264 CVecOLDcvc 29799 NrmCVeccnv 29825 +𝑣 cpv 29826 BaseSetcba 29827 ·𝑠OLD cns 29828 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pr 5427 ax-un 7722 ax-1cn 11165 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6493 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-ov 7409 df-oprab 7410 df-1st 7972 df-2nd 7973 df-2 12272 df-vc 29800 df-nv 29833 df-va 29836 df-ba 29837 df-sm 29838 df-0v 29839 df-nmcv 29841 |
This theorem is referenced by: ipidsq 29951 minvecolem2 30116 |
Copyright terms: Public domain | W3C validator |