MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nv2 Structured version   Visualization version   GIF version

Theorem nv2 30619
Description: A vector plus itself is two times the vector. (Contributed by NM, 9-Feb-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
nvdi.1 𝑋 = (BaseSet‘𝑈)
nvdi.2 𝐺 = ( +𝑣𝑈)
nvdi.4 𝑆 = ( ·𝑠OLD𝑈)
Assertion
Ref Expression
nv2 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝐴𝐺𝐴) = (2𝑆𝐴))

Proof of Theorem nv2
StepHypRef Expression
1 eqid 2731 . . 3 (1st𝑈) = (1st𝑈)
21nvvc 30602 . 2 (𝑈 ∈ NrmCVec → (1st𝑈) ∈ CVecOLD)
3 nvdi.2 . . . 4 𝐺 = ( +𝑣𝑈)
43vafval 30590 . . 3 𝐺 = (1st ‘(1st𝑈))
5 nvdi.4 . . . 4 𝑆 = ( ·𝑠OLD𝑈)
65smfval 30592 . . 3 𝑆 = (2nd ‘(1st𝑈))
7 nvdi.1 . . . 4 𝑋 = (BaseSet‘𝑈)
87, 3bafval 30591 . . 3 𝑋 = ran 𝐺
94, 6, 8vc2OLD 30555 . 2 (((1st𝑈) ∈ CVecOLD𝐴𝑋) → (𝐴𝐺𝐴) = (2𝑆𝐴))
102, 9sylan 580 1 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝐴𝐺𝐴) = (2𝑆𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  cfv 6487  (class class class)co 7352  1st c1st 7925  2c2 12186  CVecOLDcvc 30545  NrmCVeccnv 30571   +𝑣 cpv 30572  BaseSetcba 30573   ·𝑠OLD cns 30574
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pr 5372  ax-un 7674  ax-1cn 11070
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6443  df-fun 6489  df-fn 6490  df-f 6491  df-f1 6492  df-fo 6493  df-f1o 6494  df-fv 6495  df-ov 7355  df-oprab 7356  df-1st 7927  df-2nd 7928  df-2 12194  df-vc 30546  df-nv 30579  df-va 30582  df-ba 30583  df-sm 30584  df-0v 30585  df-nmcv 30587
This theorem is referenced by:  ipidsq  30697  minvecolem2  30862
  Copyright terms: Public domain W3C validator