![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nv2 | Structured version Visualization version GIF version |
Description: A vector plus itself is two times the vector. (Contributed by NM, 9-Feb-2008.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nvdi.1 | β’ π = (BaseSetβπ) |
nvdi.2 | β’ πΊ = ( +π£ βπ) |
nvdi.4 | β’ π = ( Β·π OLD βπ) |
Ref | Expression |
---|---|
nv2 | β’ ((π β NrmCVec β§ π΄ β π) β (π΄πΊπ΄) = (2ππ΄)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2732 | . . 3 β’ (1st βπ) = (1st βπ) | |
2 | 1 | nvvc 29906 | . 2 β’ (π β NrmCVec β (1st βπ) β CVecOLD) |
3 | nvdi.2 | . . . 4 β’ πΊ = ( +π£ βπ) | |
4 | 3 | vafval 29894 | . . 3 β’ πΊ = (1st β(1st βπ)) |
5 | nvdi.4 | . . . 4 β’ π = ( Β·π OLD βπ) | |
6 | 5 | smfval 29896 | . . 3 β’ π = (2nd β(1st βπ)) |
7 | nvdi.1 | . . . 4 β’ π = (BaseSetβπ) | |
8 | 7, 3 | bafval 29895 | . . 3 β’ π = ran πΊ |
9 | 4, 6, 8 | vc2OLD 29859 | . 2 β’ (((1st βπ) β CVecOLD β§ π΄ β π) β (π΄πΊπ΄) = (2ππ΄)) |
10 | 2, 9 | sylan 580 | 1 β’ ((π β NrmCVec β§ π΄ β π) β (π΄πΊπ΄) = (2ππ΄)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 = wceq 1541 β wcel 2106 βcfv 6543 (class class class)co 7411 1st c1st 7975 2c2 12269 CVecOLDcvc 29849 NrmCVeccnv 29875 +π£ cpv 29876 BaseSetcba 29877 Β·π OLD cns 29878 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pr 5427 ax-un 7727 ax-1cn 11170 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7414 df-oprab 7415 df-1st 7977 df-2nd 7978 df-2 12277 df-vc 29850 df-nv 29883 df-va 29886 df-ba 29887 df-sm 29888 df-0v 29889 df-nmcv 29891 |
This theorem is referenced by: ipidsq 30001 minvecolem2 30166 |
Copyright terms: Public domain | W3C validator |