MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nvsid Structured version   Visualization version   GIF version

Theorem nvsid 30145
Description: Identity element for the scalar product of a normed complex vector space. (Contributed by NM, 4-Dec-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
nvscl.1 𝑋 = (BaseSetβ€˜π‘ˆ)
nvscl.4 𝑆 = ( ·𝑠OLD β€˜π‘ˆ)
Assertion
Ref Expression
nvsid ((π‘ˆ ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) β†’ (1𝑆𝐴) = 𝐴)

Proof of Theorem nvsid
StepHypRef Expression
1 eqid 2730 . . 3 (1st β€˜π‘ˆ) = (1st β€˜π‘ˆ)
21nvvc 30133 . 2 (π‘ˆ ∈ NrmCVec β†’ (1st β€˜π‘ˆ) ∈ CVecOLD)
3 eqid 2730 . . . 4 ( +𝑣 β€˜π‘ˆ) = ( +𝑣 β€˜π‘ˆ)
43vafval 30121 . . 3 ( +𝑣 β€˜π‘ˆ) = (1st β€˜(1st β€˜π‘ˆ))
5 nvscl.4 . . . 4 𝑆 = ( ·𝑠OLD β€˜π‘ˆ)
65smfval 30123 . . 3 𝑆 = (2nd β€˜(1st β€˜π‘ˆ))
7 nvscl.1 . . . 4 𝑋 = (BaseSetβ€˜π‘ˆ)
87, 3bafval 30122 . . 3 𝑋 = ran ( +𝑣 β€˜π‘ˆ)
94, 6, 8vcidOLD 30082 . 2 (((1st β€˜π‘ˆ) ∈ CVecOLD ∧ 𝐴 ∈ 𝑋) β†’ (1𝑆𝐴) = 𝐴)
102, 9sylan 578 1 ((π‘ˆ ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) β†’ (1𝑆𝐴) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 394   = wceq 1539   ∈ wcel 2104  β€˜cfv 6544  (class class class)co 7413  1st c1st 7977  1c1 11115  CVecOLDcvc 30076  NrmCVeccnv 30102   +𝑣 cpv 30103  BaseSetcba 30104   ·𝑠OLD cns 30105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pr 5428  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-ov 7416  df-oprab 7417  df-1st 7979  df-2nd 7980  df-vc 30077  df-nv 30110  df-va 30113  df-ba 30114  df-sm 30115  df-0v 30116  df-nmcv 30118
This theorem is referenced by:  nvmul0or  30168  nvpi  30185  nvge0  30191  ipval2lem3  30223  ipval2  30225  ipidsq  30228  lnoadd  30276  ip1ilem  30344  ip2i  30346  ipdirilem  30347  ipasslem1  30349  ipasslem4  30352  ipasslem10  30357  minvecolem2  30393  hlmulid  30423
  Copyright terms: Public domain W3C validator