MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nvsid Structured version   Visualization version   GIF version

Theorem nvsid 30599
Description: Identity element for the scalar product of a normed complex vector space. (Contributed by NM, 4-Dec-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
nvscl.1 𝑋 = (BaseSet‘𝑈)
nvscl.4 𝑆 = ( ·𝑠OLD𝑈)
Assertion
Ref Expression
nvsid ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (1𝑆𝐴) = 𝐴)

Proof of Theorem nvsid
StepHypRef Expression
1 eqid 2731 . . 3 (1st𝑈) = (1st𝑈)
21nvvc 30587 . 2 (𝑈 ∈ NrmCVec → (1st𝑈) ∈ CVecOLD)
3 eqid 2731 . . . 4 ( +𝑣𝑈) = ( +𝑣𝑈)
43vafval 30575 . . 3 ( +𝑣𝑈) = (1st ‘(1st𝑈))
5 nvscl.4 . . . 4 𝑆 = ( ·𝑠OLD𝑈)
65smfval 30577 . . 3 𝑆 = (2nd ‘(1st𝑈))
7 nvscl.1 . . . 4 𝑋 = (BaseSet‘𝑈)
87, 3bafval 30576 . . 3 𝑋 = ran ( +𝑣𝑈)
94, 6, 8vcidOLD 30536 . 2 (((1st𝑈) ∈ CVecOLD𝐴𝑋) → (1𝑆𝐴) = 𝐴)
102, 9sylan 580 1 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (1𝑆𝐴) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  cfv 6476  (class class class)co 7341  1st c1st 7914  1c1 11002  CVecOLDcvc 30530  NrmCVeccnv 30556   +𝑣 cpv 30557  BaseSetcba 30558   ·𝑠OLD cns 30559
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pr 5365  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-ov 7344  df-oprab 7345  df-1st 7916  df-2nd 7917  df-vc 30531  df-nv 30564  df-va 30567  df-ba 30568  df-sm 30569  df-0v 30570  df-nmcv 30572
This theorem is referenced by:  nvmul0or  30622  nvpi  30639  nvge0  30645  ipval2lem3  30677  ipval2  30679  ipidsq  30682  lnoadd  30730  ip1ilem  30798  ip2i  30800  ipdirilem  30801  ipasslem1  30803  ipasslem4  30806  ipasslem10  30811  minvecolem2  30847  hlmulid  30877
  Copyright terms: Public domain W3C validator