![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nvsid | Structured version Visualization version GIF version |
Description: Identity element for the scalar product of a normed complex vector space. (Contributed by NM, 4-Dec-2007.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nvscl.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
nvscl.4 | ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) |
Ref | Expression |
---|---|
nvsid | ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (1𝑆𝐴) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2740 | . . 3 ⊢ (1st ‘𝑈) = (1st ‘𝑈) | |
2 | 1 | nvvc 30647 | . 2 ⊢ (𝑈 ∈ NrmCVec → (1st ‘𝑈) ∈ CVecOLD) |
3 | eqid 2740 | . . . 4 ⊢ ( +𝑣 ‘𝑈) = ( +𝑣 ‘𝑈) | |
4 | 3 | vafval 30635 | . . 3 ⊢ ( +𝑣 ‘𝑈) = (1st ‘(1st ‘𝑈)) |
5 | nvscl.4 | . . . 4 ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) | |
6 | 5 | smfval 30637 | . . 3 ⊢ 𝑆 = (2nd ‘(1st ‘𝑈)) |
7 | nvscl.1 | . . . 4 ⊢ 𝑋 = (BaseSet‘𝑈) | |
8 | 7, 3 | bafval 30636 | . . 3 ⊢ 𝑋 = ran ( +𝑣 ‘𝑈) |
9 | 4, 6, 8 | vcidOLD 30596 | . 2 ⊢ (((1st ‘𝑈) ∈ CVecOLD ∧ 𝐴 ∈ 𝑋) → (1𝑆𝐴) = 𝐴) |
10 | 2, 9 | sylan 579 | 1 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (1𝑆𝐴) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ‘cfv 6573 (class class class)co 7448 1st c1st 8028 1c1 11185 CVecOLDcvc 30590 NrmCVeccnv 30616 +𝑣 cpv 30617 BaseSetcba 30618 ·𝑠OLD cns 30619 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-1st 8030 df-2nd 8031 df-vc 30591 df-nv 30624 df-va 30627 df-ba 30628 df-sm 30629 df-0v 30630 df-nmcv 30632 |
This theorem is referenced by: nvmul0or 30682 nvpi 30699 nvge0 30705 ipval2lem3 30737 ipval2 30739 ipidsq 30742 lnoadd 30790 ip1ilem 30858 ip2i 30860 ipdirilem 30861 ipasslem1 30863 ipasslem4 30866 ipasslem10 30871 minvecolem2 30907 hlmulid 30937 |
Copyright terms: Public domain | W3C validator |