![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nvsid | Structured version Visualization version GIF version |
Description: Identity element for the scalar product of a normed complex vector space. (Contributed by NM, 4-Dec-2007.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nvscl.1 | β’ π = (BaseSetβπ) |
nvscl.4 | β’ π = ( Β·π OLD βπ) |
Ref | Expression |
---|---|
nvsid | β’ ((π β NrmCVec β§ π΄ β π) β (1ππ΄) = π΄) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2730 | . . 3 β’ (1st βπ) = (1st βπ) | |
2 | 1 | nvvc 30133 | . 2 β’ (π β NrmCVec β (1st βπ) β CVecOLD) |
3 | eqid 2730 | . . . 4 β’ ( +π£ βπ) = ( +π£ βπ) | |
4 | 3 | vafval 30121 | . . 3 β’ ( +π£ βπ) = (1st β(1st βπ)) |
5 | nvscl.4 | . . . 4 β’ π = ( Β·π OLD βπ) | |
6 | 5 | smfval 30123 | . . 3 β’ π = (2nd β(1st βπ)) |
7 | nvscl.1 | . . . 4 β’ π = (BaseSetβπ) | |
8 | 7, 3 | bafval 30122 | . . 3 β’ π = ran ( +π£ βπ) |
9 | 4, 6, 8 | vcidOLD 30082 | . 2 β’ (((1st βπ) β CVecOLD β§ π΄ β π) β (1ππ΄) = π΄) |
10 | 2, 9 | sylan 578 | 1 β’ ((π β NrmCVec β§ π΄ β π) β (1ππ΄) = π΄) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 394 = wceq 1539 β wcel 2104 βcfv 6544 (class class class)co 7413 1st c1st 7977 1c1 11115 CVecOLDcvc 30076 NrmCVeccnv 30102 +π£ cpv 30103 BaseSetcba 30104 Β·π OLD cns 30105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pr 5428 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-ov 7416 df-oprab 7417 df-1st 7979 df-2nd 7980 df-vc 30077 df-nv 30110 df-va 30113 df-ba 30114 df-sm 30115 df-0v 30116 df-nmcv 30118 |
This theorem is referenced by: nvmul0or 30168 nvpi 30185 nvge0 30191 ipval2lem3 30223 ipval2 30225 ipidsq 30228 lnoadd 30276 ip1ilem 30344 ip2i 30346 ipdirilem 30347 ipasslem1 30349 ipasslem4 30352 ipasslem10 30357 minvecolem2 30393 hlmulid 30423 |
Copyright terms: Public domain | W3C validator |