MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nvsid Structured version   Visualization version   GIF version

Theorem nvsid 28509
Description: Identity element for the scalar product of a normed complex vector space. (Contributed by NM, 4-Dec-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
nvscl.1 𝑋 = (BaseSet‘𝑈)
nvscl.4 𝑆 = ( ·𝑠OLD𝑈)
Assertion
Ref Expression
nvsid ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (1𝑆𝐴) = 𝐴)

Proof of Theorem nvsid
StepHypRef Expression
1 eqid 2758 . . 3 (1st𝑈) = (1st𝑈)
21nvvc 28497 . 2 (𝑈 ∈ NrmCVec → (1st𝑈) ∈ CVecOLD)
3 eqid 2758 . . . 4 ( +𝑣𝑈) = ( +𝑣𝑈)
43vafval 28485 . . 3 ( +𝑣𝑈) = (1st ‘(1st𝑈))
5 nvscl.4 . . . 4 𝑆 = ( ·𝑠OLD𝑈)
65smfval 28487 . . 3 𝑆 = (2nd ‘(1st𝑈))
7 nvscl.1 . . . 4 𝑋 = (BaseSet‘𝑈)
87, 3bafval 28486 . . 3 𝑋 = ran ( +𝑣𝑈)
94, 6, 8vcidOLD 28446 . 2 (((1st𝑈) ∈ CVecOLD𝐴𝑋) → (1𝑆𝐴) = 𝐴)
102, 9sylan 583 1 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (1𝑆𝐴) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2111  cfv 6335  (class class class)co 7150  1st c1st 7691  1c1 10576  CVecOLDcvc 28440  NrmCVeccnv 28466   +𝑣 cpv 28467  BaseSetcba 28468   ·𝑠OLD cns 28469
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5156  ax-sep 5169  ax-nul 5176  ax-pr 5298  ax-un 7459
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-ral 3075  df-rex 3076  df-reu 3077  df-rab 3079  df-v 3411  df-sbc 3697  df-csb 3806  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-nul 4226  df-if 4421  df-sn 4523  df-pr 4525  df-op 4529  df-uni 4799  df-iun 4885  df-br 5033  df-opab 5095  df-mpt 5113  df-id 5430  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-f1 6340  df-fo 6341  df-f1o 6342  df-fv 6343  df-ov 7153  df-oprab 7154  df-1st 7693  df-2nd 7694  df-vc 28441  df-nv 28474  df-va 28477  df-ba 28478  df-sm 28479  df-0v 28480  df-nmcv 28482
This theorem is referenced by:  nvmul0or  28532  nvpi  28549  nvge0  28555  ipval2lem3  28587  ipval2  28589  ipidsq  28592  lnoadd  28640  ip1ilem  28708  ip2i  28710  ipdirilem  28711  ipasslem1  28713  ipasslem4  28716  ipasslem10  28721  minvecolem2  28757  hlmulid  28787
  Copyright terms: Public domain W3C validator