MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  leweon Structured version   Visualization version   GIF version

Theorem leweon 9698
Description: Lexicographical order is a well-ordering of On × On. Proposition 7.56(1) of [TakeutiZaring] p. 54. Note that unlike r0weon 9699, this order is not set-like, as the preimage of ⟨1o, ∅⟩ is the proper class ({∅} × On). (Contributed by Mario Carneiro, 9-Mar-2013.)
Hypothesis
Ref Expression
leweon.1 𝐿 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On)) ∧ ((1st𝑥) ∈ (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) ∈ (2nd𝑦))))}
Assertion
Ref Expression
leweon 𝐿 We (On × On)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝐿(𝑥,𝑦)

Proof of Theorem leweon
StepHypRef Expression
1 epweon 7603 . 2 E We On
2 leweon.1 . . . 4 𝐿 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On)) ∧ ((1st𝑥) ∈ (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) ∈ (2nd𝑦))))}
3 fvex 6769 . . . . . . . 8 (1st𝑦) ∈ V
43epeli 5488 . . . . . . 7 ((1st𝑥) E (1st𝑦) ↔ (1st𝑥) ∈ (1st𝑦))
5 fvex 6769 . . . . . . . . 9 (2nd𝑦) ∈ V
65epeli 5488 . . . . . . . 8 ((2nd𝑥) E (2nd𝑦) ↔ (2nd𝑥) ∈ (2nd𝑦))
76anbi2i 622 . . . . . . 7 (((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) E (2nd𝑦)) ↔ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) ∈ (2nd𝑦)))
84, 7orbi12i 911 . . . . . 6 (((1st𝑥) E (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) E (2nd𝑦))) ↔ ((1st𝑥) ∈ (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) ∈ (2nd𝑦))))
98anbi2i 622 . . . . 5 (((𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On)) ∧ ((1st𝑥) E (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) E (2nd𝑦)))) ↔ ((𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On)) ∧ ((1st𝑥) ∈ (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) ∈ (2nd𝑦)))))
109opabbii 5137 . . . 4 {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On)) ∧ ((1st𝑥) E (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) E (2nd𝑦))))} = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On)) ∧ ((1st𝑥) ∈ (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) ∈ (2nd𝑦))))}
112, 10eqtr4i 2769 . . 3 𝐿 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On)) ∧ ((1st𝑥) E (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) E (2nd𝑦))))}
1211wexp 7942 . 2 (( E We On ∧ E We On) → 𝐿 We (On × On))
131, 1, 12mp2an 688 1 𝐿 We (On × On)
Colors of variables: wff setvar class
Syntax hints:  wa 395  wo 843   = wceq 1539  wcel 2108   class class class wbr 5070  {copab 5132   E cep 5485   We wwe 5534   × cxp 5578  Oncon0 6251  cfv 6418  1st c1st 7802  2nd c2nd 7803
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-ord 6254  df-on 6255  df-iota 6376  df-fun 6420  df-fv 6426  df-1st 7804  df-2nd 7805
This theorem is referenced by:  r0weon  9699
  Copyright terms: Public domain W3C validator