MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  leweon Structured version   Visualization version   GIF version

Theorem leweon 10082
Description: Lexicographical order is a well-ordering of On × On. Proposition 7.56(1) of [TakeutiZaring] p. 54. Note that unlike r0weon 10083, this order is not set-like, as the preimage of ⟨1o, ∅⟩ is the proper class ({∅} × On). (Contributed by Mario Carneiro, 9-Mar-2013.)
Hypothesis
Ref Expression
leweon.1 𝐿 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On)) ∧ ((1st𝑥) ∈ (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) ∈ (2nd𝑦))))}
Assertion
Ref Expression
leweon 𝐿 We (On × On)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝐿(𝑥,𝑦)

Proof of Theorem leweon
StepHypRef Expression
1 epweon 7812 . 2 E We On
2 leweon.1 . . . 4 𝐿 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On)) ∧ ((1st𝑥) ∈ (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) ∈ (2nd𝑦))))}
3 fvex 6935 . . . . . . . 8 (1st𝑦) ∈ V
43epeli 5601 . . . . . . 7 ((1st𝑥) E (1st𝑦) ↔ (1st𝑥) ∈ (1st𝑦))
5 fvex 6935 . . . . . . . . 9 (2nd𝑦) ∈ V
65epeli 5601 . . . . . . . 8 ((2nd𝑥) E (2nd𝑦) ↔ (2nd𝑥) ∈ (2nd𝑦))
76anbi2i 622 . . . . . . 7 (((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) E (2nd𝑦)) ↔ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) ∈ (2nd𝑦)))
84, 7orbi12i 913 . . . . . 6 (((1st𝑥) E (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) E (2nd𝑦))) ↔ ((1st𝑥) ∈ (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) ∈ (2nd𝑦))))
98anbi2i 622 . . . . 5 (((𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On)) ∧ ((1st𝑥) E (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) E (2nd𝑦)))) ↔ ((𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On)) ∧ ((1st𝑥) ∈ (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) ∈ (2nd𝑦)))))
109opabbii 5233 . . . 4 {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On)) ∧ ((1st𝑥) E (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) E (2nd𝑦))))} = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On)) ∧ ((1st𝑥) ∈ (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) ∈ (2nd𝑦))))}
112, 10eqtr4i 2771 . . 3 𝐿 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On)) ∧ ((1st𝑥) E (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) E (2nd𝑦))))}
1211wexp 8173 . 2 (( E We On ∧ E We On) → 𝐿 We (On × On))
131, 1, 12mp2an 691 1 𝐿 We (On × On)
Colors of variables: wff setvar class
Syntax hints:  wa 395  wo 846   = wceq 1537  wcel 2108   class class class wbr 5166  {copab 5228   E cep 5598   We wwe 5651   × cxp 5698  Oncon0 6397  cfv 6575  1st c1st 8030  2nd c2nd 8031
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7772
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-ord 6400  df-on 6401  df-iota 6527  df-fun 6577  df-fv 6583  df-1st 8032  df-2nd 8033
This theorem is referenced by:  r0weon  10083
  Copyright terms: Public domain W3C validator