![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > leweon | Structured version Visualization version GIF version |
Description: Lexicographical order is a well-ordering of On × On. Proposition 7.56(1) of [TakeutiZaring] p. 54. Note that unlike r0weon 10007, this order is not set-like, as the preimage of ⟨1o, ∅⟩ is the proper class ({∅} × On). (Contributed by Mario Carneiro, 9-Mar-2013.) |
Ref | Expression |
---|---|
leweon.1 | ⊢ 𝐿 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On)) ∧ ((1st ‘𝑥) ∈ (1st ‘𝑦) ∨ ((1st ‘𝑥) = (1st ‘𝑦) ∧ (2nd ‘𝑥) ∈ (2nd ‘𝑦))))} |
Ref | Expression |
---|---|
leweon | ⊢ 𝐿 We (On × On) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | epweon 7762 | . 2 ⊢ E We On | |
2 | leweon.1 | . . . 4 ⊢ 𝐿 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On)) ∧ ((1st ‘𝑥) ∈ (1st ‘𝑦) ∨ ((1st ‘𝑥) = (1st ‘𝑦) ∧ (2nd ‘𝑥) ∈ (2nd ‘𝑦))))} | |
3 | fvex 6905 | . . . . . . . 8 ⊢ (1st ‘𝑦) ∈ V | |
4 | 3 | epeli 5583 | . . . . . . 7 ⊢ ((1st ‘𝑥) E (1st ‘𝑦) ↔ (1st ‘𝑥) ∈ (1st ‘𝑦)) |
5 | fvex 6905 | . . . . . . . . 9 ⊢ (2nd ‘𝑦) ∈ V | |
6 | 5 | epeli 5583 | . . . . . . . 8 ⊢ ((2nd ‘𝑥) E (2nd ‘𝑦) ↔ (2nd ‘𝑥) ∈ (2nd ‘𝑦)) |
7 | 6 | anbi2i 624 | . . . . . . 7 ⊢ (((1st ‘𝑥) = (1st ‘𝑦) ∧ (2nd ‘𝑥) E (2nd ‘𝑦)) ↔ ((1st ‘𝑥) = (1st ‘𝑦) ∧ (2nd ‘𝑥) ∈ (2nd ‘𝑦))) |
8 | 4, 7 | orbi12i 914 | . . . . . 6 ⊢ (((1st ‘𝑥) E (1st ‘𝑦) ∨ ((1st ‘𝑥) = (1st ‘𝑦) ∧ (2nd ‘𝑥) E (2nd ‘𝑦))) ↔ ((1st ‘𝑥) ∈ (1st ‘𝑦) ∨ ((1st ‘𝑥) = (1st ‘𝑦) ∧ (2nd ‘𝑥) ∈ (2nd ‘𝑦)))) |
9 | 8 | anbi2i 624 | . . . . 5 ⊢ (((𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On)) ∧ ((1st ‘𝑥) E (1st ‘𝑦) ∨ ((1st ‘𝑥) = (1st ‘𝑦) ∧ (2nd ‘𝑥) E (2nd ‘𝑦)))) ↔ ((𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On)) ∧ ((1st ‘𝑥) ∈ (1st ‘𝑦) ∨ ((1st ‘𝑥) = (1st ‘𝑦) ∧ (2nd ‘𝑥) ∈ (2nd ‘𝑦))))) |
10 | 9 | opabbii 5216 | . . . 4 ⊢ {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On)) ∧ ((1st ‘𝑥) E (1st ‘𝑦) ∨ ((1st ‘𝑥) = (1st ‘𝑦) ∧ (2nd ‘𝑥) E (2nd ‘𝑦))))} = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On)) ∧ ((1st ‘𝑥) ∈ (1st ‘𝑦) ∨ ((1st ‘𝑥) = (1st ‘𝑦) ∧ (2nd ‘𝑥) ∈ (2nd ‘𝑦))))} |
11 | 2, 10 | eqtr4i 2764 | . . 3 ⊢ 𝐿 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On)) ∧ ((1st ‘𝑥) E (1st ‘𝑦) ∨ ((1st ‘𝑥) = (1st ‘𝑦) ∧ (2nd ‘𝑥) E (2nd ‘𝑦))))} |
12 | 11 | wexp 8116 | . 2 ⊢ (( E We On ∧ E We On) → 𝐿 We (On × On)) |
13 | 1, 1, 12 | mp2an 691 | 1 ⊢ 𝐿 We (On × On) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 397 ∨ wo 846 = wceq 1542 ∈ wcel 2107 class class class wbr 5149 {copab 5211 E cep 5580 We wwe 5631 × cxp 5675 Oncon0 6365 ‘cfv 6544 1st c1st 7973 2nd c2nd 7974 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 ax-un 7725 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-int 4952 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-ord 6368 df-on 6369 df-iota 6496 df-fun 6546 df-fv 6552 df-1st 7975 df-2nd 7976 |
This theorem is referenced by: r0weon 10007 |
Copyright terms: Public domain | W3C validator |