| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > leweon | Structured version Visualization version GIF version | ||
| Description: Lexicographical order is a well-ordering of On × On. Proposition 7.56(1) of [TakeutiZaring] p. 54. Note that unlike r0weon 9900, this order is not set-like, as the preimage of 〈1o, ∅〉 is the proper class ({∅} × On). (Contributed by Mario Carneiro, 9-Mar-2013.) |
| Ref | Expression |
|---|---|
| leweon.1 | ⊢ 𝐿 = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On)) ∧ ((1st ‘𝑥) ∈ (1st ‘𝑦) ∨ ((1st ‘𝑥) = (1st ‘𝑦) ∧ (2nd ‘𝑥) ∈ (2nd ‘𝑦))))} |
| Ref | Expression |
|---|---|
| leweon | ⊢ 𝐿 We (On × On) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | epweon 7708 | . 2 ⊢ E We On | |
| 2 | leweon.1 | . . . 4 ⊢ 𝐿 = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On)) ∧ ((1st ‘𝑥) ∈ (1st ‘𝑦) ∨ ((1st ‘𝑥) = (1st ‘𝑦) ∧ (2nd ‘𝑥) ∈ (2nd ‘𝑦))))} | |
| 3 | fvex 6835 | . . . . . . . 8 ⊢ (1st ‘𝑦) ∈ V | |
| 4 | 3 | epeli 5518 | . . . . . . 7 ⊢ ((1st ‘𝑥) E (1st ‘𝑦) ↔ (1st ‘𝑥) ∈ (1st ‘𝑦)) |
| 5 | fvex 6835 | . . . . . . . . 9 ⊢ (2nd ‘𝑦) ∈ V | |
| 6 | 5 | epeli 5518 | . . . . . . . 8 ⊢ ((2nd ‘𝑥) E (2nd ‘𝑦) ↔ (2nd ‘𝑥) ∈ (2nd ‘𝑦)) |
| 7 | 6 | anbi2i 623 | . . . . . . 7 ⊢ (((1st ‘𝑥) = (1st ‘𝑦) ∧ (2nd ‘𝑥) E (2nd ‘𝑦)) ↔ ((1st ‘𝑥) = (1st ‘𝑦) ∧ (2nd ‘𝑥) ∈ (2nd ‘𝑦))) |
| 8 | 4, 7 | orbi12i 914 | . . . . . 6 ⊢ (((1st ‘𝑥) E (1st ‘𝑦) ∨ ((1st ‘𝑥) = (1st ‘𝑦) ∧ (2nd ‘𝑥) E (2nd ‘𝑦))) ↔ ((1st ‘𝑥) ∈ (1st ‘𝑦) ∨ ((1st ‘𝑥) = (1st ‘𝑦) ∧ (2nd ‘𝑥) ∈ (2nd ‘𝑦)))) |
| 9 | 8 | anbi2i 623 | . . . . 5 ⊢ (((𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On)) ∧ ((1st ‘𝑥) E (1st ‘𝑦) ∨ ((1st ‘𝑥) = (1st ‘𝑦) ∧ (2nd ‘𝑥) E (2nd ‘𝑦)))) ↔ ((𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On)) ∧ ((1st ‘𝑥) ∈ (1st ‘𝑦) ∨ ((1st ‘𝑥) = (1st ‘𝑦) ∧ (2nd ‘𝑥) ∈ (2nd ‘𝑦))))) |
| 10 | 9 | opabbii 5158 | . . . 4 ⊢ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On)) ∧ ((1st ‘𝑥) E (1st ‘𝑦) ∨ ((1st ‘𝑥) = (1st ‘𝑦) ∧ (2nd ‘𝑥) E (2nd ‘𝑦))))} = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On)) ∧ ((1st ‘𝑥) ∈ (1st ‘𝑦) ∨ ((1st ‘𝑥) = (1st ‘𝑦) ∧ (2nd ‘𝑥) ∈ (2nd ‘𝑦))))} |
| 11 | 2, 10 | eqtr4i 2757 | . . 3 ⊢ 𝐿 = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On)) ∧ ((1st ‘𝑥) E (1st ‘𝑦) ∨ ((1st ‘𝑥) = (1st ‘𝑦) ∧ (2nd ‘𝑥) E (2nd ‘𝑦))))} |
| 12 | 11 | wexp 8060 | . 2 ⊢ (( E We On ∧ E We On) → 𝐿 We (On × On)) |
| 13 | 1, 1, 12 | mp2an 692 | 1 ⊢ 𝐿 We (On × On) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∨ wo 847 = wceq 1541 ∈ wcel 2111 class class class wbr 5091 {copab 5153 E cep 5515 We wwe 5568 × cxp 5614 Oncon0 6306 ‘cfv 6481 1st c1st 7919 2nd c2nd 7920 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-int 4898 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-ord 6309 df-on 6310 df-iota 6437 df-fun 6483 df-fv 6489 df-1st 7921 df-2nd 7922 |
| This theorem is referenced by: r0weon 9900 |
| Copyright terms: Public domain | W3C validator |