| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > leweon | Structured version Visualization version GIF version | ||
| Description: Lexicographical order is a well-ordering of On × On. Proposition 7.56(1) of [TakeutiZaring] p. 54. Note that unlike r0weon 9972, this order is not set-like, as the preimage of 〈1o, ∅〉 is the proper class ({∅} × On). (Contributed by Mario Carneiro, 9-Mar-2013.) |
| Ref | Expression |
|---|---|
| leweon.1 | ⊢ 𝐿 = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On)) ∧ ((1st ‘𝑥) ∈ (1st ‘𝑦) ∨ ((1st ‘𝑥) = (1st ‘𝑦) ∧ (2nd ‘𝑥) ∈ (2nd ‘𝑦))))} |
| Ref | Expression |
|---|---|
| leweon | ⊢ 𝐿 We (On × On) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | epweon 7754 | . 2 ⊢ E We On | |
| 2 | leweon.1 | . . . 4 ⊢ 𝐿 = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On)) ∧ ((1st ‘𝑥) ∈ (1st ‘𝑦) ∨ ((1st ‘𝑥) = (1st ‘𝑦) ∧ (2nd ‘𝑥) ∈ (2nd ‘𝑦))))} | |
| 3 | fvex 6874 | . . . . . . . 8 ⊢ (1st ‘𝑦) ∈ V | |
| 4 | 3 | epeli 5543 | . . . . . . 7 ⊢ ((1st ‘𝑥) E (1st ‘𝑦) ↔ (1st ‘𝑥) ∈ (1st ‘𝑦)) |
| 5 | fvex 6874 | . . . . . . . . 9 ⊢ (2nd ‘𝑦) ∈ V | |
| 6 | 5 | epeli 5543 | . . . . . . . 8 ⊢ ((2nd ‘𝑥) E (2nd ‘𝑦) ↔ (2nd ‘𝑥) ∈ (2nd ‘𝑦)) |
| 7 | 6 | anbi2i 623 | . . . . . . 7 ⊢ (((1st ‘𝑥) = (1st ‘𝑦) ∧ (2nd ‘𝑥) E (2nd ‘𝑦)) ↔ ((1st ‘𝑥) = (1st ‘𝑦) ∧ (2nd ‘𝑥) ∈ (2nd ‘𝑦))) |
| 8 | 4, 7 | orbi12i 914 | . . . . . 6 ⊢ (((1st ‘𝑥) E (1st ‘𝑦) ∨ ((1st ‘𝑥) = (1st ‘𝑦) ∧ (2nd ‘𝑥) E (2nd ‘𝑦))) ↔ ((1st ‘𝑥) ∈ (1st ‘𝑦) ∨ ((1st ‘𝑥) = (1st ‘𝑦) ∧ (2nd ‘𝑥) ∈ (2nd ‘𝑦)))) |
| 9 | 8 | anbi2i 623 | . . . . 5 ⊢ (((𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On)) ∧ ((1st ‘𝑥) E (1st ‘𝑦) ∨ ((1st ‘𝑥) = (1st ‘𝑦) ∧ (2nd ‘𝑥) E (2nd ‘𝑦)))) ↔ ((𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On)) ∧ ((1st ‘𝑥) ∈ (1st ‘𝑦) ∨ ((1st ‘𝑥) = (1st ‘𝑦) ∧ (2nd ‘𝑥) ∈ (2nd ‘𝑦))))) |
| 10 | 9 | opabbii 5177 | . . . 4 ⊢ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On)) ∧ ((1st ‘𝑥) E (1st ‘𝑦) ∨ ((1st ‘𝑥) = (1st ‘𝑦) ∧ (2nd ‘𝑥) E (2nd ‘𝑦))))} = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On)) ∧ ((1st ‘𝑥) ∈ (1st ‘𝑦) ∨ ((1st ‘𝑥) = (1st ‘𝑦) ∧ (2nd ‘𝑥) ∈ (2nd ‘𝑦))))} |
| 11 | 2, 10 | eqtr4i 2756 | . . 3 ⊢ 𝐿 = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On)) ∧ ((1st ‘𝑥) E (1st ‘𝑦) ∨ ((1st ‘𝑥) = (1st ‘𝑦) ∧ (2nd ‘𝑥) E (2nd ‘𝑦))))} |
| 12 | 11 | wexp 8112 | . 2 ⊢ (( E We On ∧ E We On) → 𝐿 We (On × On)) |
| 13 | 1, 1, 12 | mp2an 692 | 1 ⊢ 𝐿 We (On × On) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 class class class wbr 5110 {copab 5172 E cep 5540 We wwe 5593 × cxp 5639 Oncon0 6335 ‘cfv 6514 1st c1st 7969 2nd c2nd 7970 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-ord 6338 df-on 6339 df-iota 6467 df-fun 6516 df-fv 6522 df-1st 7971 df-2nd 7972 |
| This theorem is referenced by: r0weon 9972 |
| Copyright terms: Public domain | W3C validator |