MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  leweon Structured version   Visualization version   GIF version

Theorem leweon 10058
Description: Lexicographical order is a well-ordering of On × On. Proposition 7.56(1) of [TakeutiZaring] p. 54. Note that unlike r0weon 10059, this order is not set-like, as the preimage of ⟨1o, ∅⟩ is the proper class ({∅} × On). (Contributed by Mario Carneiro, 9-Mar-2013.)
Hypothesis
Ref Expression
leweon.1 𝐿 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On)) ∧ ((1st𝑥) ∈ (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) ∈ (2nd𝑦))))}
Assertion
Ref Expression
leweon 𝐿 We (On × On)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝐿(𝑥,𝑦)

Proof of Theorem leweon
StepHypRef Expression
1 epweon 7801 . 2 E We On
2 leweon.1 . . . 4 𝐿 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On)) ∧ ((1st𝑥) ∈ (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) ∈ (2nd𝑦))))}
3 fvex 6927 . . . . . . . 8 (1st𝑦) ∈ V
43epeli 5595 . . . . . . 7 ((1st𝑥) E (1st𝑦) ↔ (1st𝑥) ∈ (1st𝑦))
5 fvex 6927 . . . . . . . . 9 (2nd𝑦) ∈ V
65epeli 5595 . . . . . . . 8 ((2nd𝑥) E (2nd𝑦) ↔ (2nd𝑥) ∈ (2nd𝑦))
76anbi2i 623 . . . . . . 7 (((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) E (2nd𝑦)) ↔ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) ∈ (2nd𝑦)))
84, 7orbi12i 915 . . . . . 6 (((1st𝑥) E (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) E (2nd𝑦))) ↔ ((1st𝑥) ∈ (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) ∈ (2nd𝑦))))
98anbi2i 623 . . . . 5 (((𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On)) ∧ ((1st𝑥) E (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) E (2nd𝑦)))) ↔ ((𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On)) ∧ ((1st𝑥) ∈ (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) ∈ (2nd𝑦)))))
109opabbii 5218 . . . 4 {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On)) ∧ ((1st𝑥) E (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) E (2nd𝑦))))} = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On)) ∧ ((1st𝑥) ∈ (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) ∈ (2nd𝑦))))}
112, 10eqtr4i 2768 . . 3 𝐿 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On)) ∧ ((1st𝑥) E (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) E (2nd𝑦))))}
1211wexp 8163 . 2 (( E We On ∧ E We On) → 𝐿 We (On × On))
131, 1, 12mp2an 692 1 𝐿 We (On × On)
Colors of variables: wff setvar class
Syntax hints:  wa 395  wo 848   = wceq 1539  wcel 2108   class class class wbr 5151  {copab 5213   E cep 5592   We wwe 5644   × cxp 5691  Oncon0 6392  cfv 6569  1st c1st 8020  2nd c2nd 8021
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5305  ax-nul 5315  ax-pr 5441  ax-un 7761
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3483  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-pss 3986  df-nul 4343  df-if 4535  df-pw 4610  df-sn 4635  df-pr 4637  df-op 4641  df-uni 4916  df-int 4955  df-br 5152  df-opab 5214  df-mpt 5235  df-tr 5269  df-id 5587  df-eprel 5593  df-po 5601  df-so 5602  df-fr 5645  df-we 5647  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702  df-dm 5703  df-rn 5704  df-res 5705  df-ima 5706  df-ord 6395  df-on 6396  df-iota 6522  df-fun 6571  df-fv 6577  df-1st 8022  df-2nd 8023
This theorem is referenced by:  r0weon  10059
  Copyright terms: Public domain W3C validator