Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > leweon | Structured version Visualization version GIF version |
Description: Lexicographical order is a well-ordering of On × On. Proposition 7.56(1) of [TakeutiZaring] p. 54. Note that unlike r0weon 9768, this order is not set-like, as the preimage of 〈1o, ∅〉 is the proper class ({∅} × On). (Contributed by Mario Carneiro, 9-Mar-2013.) |
Ref | Expression |
---|---|
leweon.1 | ⊢ 𝐿 = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On)) ∧ ((1st ‘𝑥) ∈ (1st ‘𝑦) ∨ ((1st ‘𝑥) = (1st ‘𝑦) ∧ (2nd ‘𝑥) ∈ (2nd ‘𝑦))))} |
Ref | Expression |
---|---|
leweon | ⊢ 𝐿 We (On × On) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | epweon 7625 | . 2 ⊢ E We On | |
2 | leweon.1 | . . . 4 ⊢ 𝐿 = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On)) ∧ ((1st ‘𝑥) ∈ (1st ‘𝑦) ∨ ((1st ‘𝑥) = (1st ‘𝑦) ∧ (2nd ‘𝑥) ∈ (2nd ‘𝑦))))} | |
3 | fvex 6787 | . . . . . . . 8 ⊢ (1st ‘𝑦) ∈ V | |
4 | 3 | epeli 5497 | . . . . . . 7 ⊢ ((1st ‘𝑥) E (1st ‘𝑦) ↔ (1st ‘𝑥) ∈ (1st ‘𝑦)) |
5 | fvex 6787 | . . . . . . . . 9 ⊢ (2nd ‘𝑦) ∈ V | |
6 | 5 | epeli 5497 | . . . . . . . 8 ⊢ ((2nd ‘𝑥) E (2nd ‘𝑦) ↔ (2nd ‘𝑥) ∈ (2nd ‘𝑦)) |
7 | 6 | anbi2i 623 | . . . . . . 7 ⊢ (((1st ‘𝑥) = (1st ‘𝑦) ∧ (2nd ‘𝑥) E (2nd ‘𝑦)) ↔ ((1st ‘𝑥) = (1st ‘𝑦) ∧ (2nd ‘𝑥) ∈ (2nd ‘𝑦))) |
8 | 4, 7 | orbi12i 912 | . . . . . 6 ⊢ (((1st ‘𝑥) E (1st ‘𝑦) ∨ ((1st ‘𝑥) = (1st ‘𝑦) ∧ (2nd ‘𝑥) E (2nd ‘𝑦))) ↔ ((1st ‘𝑥) ∈ (1st ‘𝑦) ∨ ((1st ‘𝑥) = (1st ‘𝑦) ∧ (2nd ‘𝑥) ∈ (2nd ‘𝑦)))) |
9 | 8 | anbi2i 623 | . . . . 5 ⊢ (((𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On)) ∧ ((1st ‘𝑥) E (1st ‘𝑦) ∨ ((1st ‘𝑥) = (1st ‘𝑦) ∧ (2nd ‘𝑥) E (2nd ‘𝑦)))) ↔ ((𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On)) ∧ ((1st ‘𝑥) ∈ (1st ‘𝑦) ∨ ((1st ‘𝑥) = (1st ‘𝑦) ∧ (2nd ‘𝑥) ∈ (2nd ‘𝑦))))) |
10 | 9 | opabbii 5141 | . . . 4 ⊢ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On)) ∧ ((1st ‘𝑥) E (1st ‘𝑦) ∨ ((1st ‘𝑥) = (1st ‘𝑦) ∧ (2nd ‘𝑥) E (2nd ‘𝑦))))} = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On)) ∧ ((1st ‘𝑥) ∈ (1st ‘𝑦) ∨ ((1st ‘𝑥) = (1st ‘𝑦) ∧ (2nd ‘𝑥) ∈ (2nd ‘𝑦))))} |
11 | 2, 10 | eqtr4i 2769 | . . 3 ⊢ 𝐿 = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On)) ∧ ((1st ‘𝑥) E (1st ‘𝑦) ∨ ((1st ‘𝑥) = (1st ‘𝑦) ∧ (2nd ‘𝑥) E (2nd ‘𝑦))))} |
12 | 11 | wexp 7971 | . 2 ⊢ (( E We On ∧ E We On) → 𝐿 We (On × On)) |
13 | 1, 1, 12 | mp2an 689 | 1 ⊢ 𝐿 We (On × On) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 ∨ wo 844 = wceq 1539 ∈ wcel 2106 class class class wbr 5074 {copab 5136 E cep 5494 We wwe 5543 × cxp 5587 Oncon0 6266 ‘cfv 6433 1st c1st 7829 2nd c2nd 7830 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-ord 6269 df-on 6270 df-iota 6391 df-fun 6435 df-fv 6441 df-1st 7831 df-2nd 7832 |
This theorem is referenced by: r0weon 9768 |
Copyright terms: Public domain | W3C validator |