![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > leweon | Structured version Visualization version GIF version |
Description: Lexicographical order is a well-ordering of On × On. Proposition 7.56(1) of [TakeutiZaring] p. 54. Note that unlike r0weon 10037, this order is not set-like, as the preimage of 〈1o, ∅〉 is the proper class ({∅} × On). (Contributed by Mario Carneiro, 9-Mar-2013.) |
Ref | Expression |
---|---|
leweon.1 | ⊢ 𝐿 = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On)) ∧ ((1st ‘𝑥) ∈ (1st ‘𝑦) ∨ ((1st ‘𝑥) = (1st ‘𝑦) ∧ (2nd ‘𝑥) ∈ (2nd ‘𝑦))))} |
Ref | Expression |
---|---|
leweon | ⊢ 𝐿 We (On × On) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | epweon 7778 | . 2 ⊢ E We On | |
2 | leweon.1 | . . . 4 ⊢ 𝐿 = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On)) ∧ ((1st ‘𝑥) ∈ (1st ‘𝑦) ∨ ((1st ‘𝑥) = (1st ‘𝑦) ∧ (2nd ‘𝑥) ∈ (2nd ‘𝑦))))} | |
3 | fvex 6909 | . . . . . . . 8 ⊢ (1st ‘𝑦) ∈ V | |
4 | 3 | epeli 5584 | . . . . . . 7 ⊢ ((1st ‘𝑥) E (1st ‘𝑦) ↔ (1st ‘𝑥) ∈ (1st ‘𝑦)) |
5 | fvex 6909 | . . . . . . . . 9 ⊢ (2nd ‘𝑦) ∈ V | |
6 | 5 | epeli 5584 | . . . . . . . 8 ⊢ ((2nd ‘𝑥) E (2nd ‘𝑦) ↔ (2nd ‘𝑥) ∈ (2nd ‘𝑦)) |
7 | 6 | anbi2i 621 | . . . . . . 7 ⊢ (((1st ‘𝑥) = (1st ‘𝑦) ∧ (2nd ‘𝑥) E (2nd ‘𝑦)) ↔ ((1st ‘𝑥) = (1st ‘𝑦) ∧ (2nd ‘𝑥) ∈ (2nd ‘𝑦))) |
8 | 4, 7 | orbi12i 912 | . . . . . 6 ⊢ (((1st ‘𝑥) E (1st ‘𝑦) ∨ ((1st ‘𝑥) = (1st ‘𝑦) ∧ (2nd ‘𝑥) E (2nd ‘𝑦))) ↔ ((1st ‘𝑥) ∈ (1st ‘𝑦) ∨ ((1st ‘𝑥) = (1st ‘𝑦) ∧ (2nd ‘𝑥) ∈ (2nd ‘𝑦)))) |
9 | 8 | anbi2i 621 | . . . . 5 ⊢ (((𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On)) ∧ ((1st ‘𝑥) E (1st ‘𝑦) ∨ ((1st ‘𝑥) = (1st ‘𝑦) ∧ (2nd ‘𝑥) E (2nd ‘𝑦)))) ↔ ((𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On)) ∧ ((1st ‘𝑥) ∈ (1st ‘𝑦) ∨ ((1st ‘𝑥) = (1st ‘𝑦) ∧ (2nd ‘𝑥) ∈ (2nd ‘𝑦))))) |
10 | 9 | opabbii 5216 | . . . 4 ⊢ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On)) ∧ ((1st ‘𝑥) E (1st ‘𝑦) ∨ ((1st ‘𝑥) = (1st ‘𝑦) ∧ (2nd ‘𝑥) E (2nd ‘𝑦))))} = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On)) ∧ ((1st ‘𝑥) ∈ (1st ‘𝑦) ∨ ((1st ‘𝑥) = (1st ‘𝑦) ∧ (2nd ‘𝑥) ∈ (2nd ‘𝑦))))} |
11 | 2, 10 | eqtr4i 2756 | . . 3 ⊢ 𝐿 = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On)) ∧ ((1st ‘𝑥) E (1st ‘𝑦) ∨ ((1st ‘𝑥) = (1st ‘𝑦) ∧ (2nd ‘𝑥) E (2nd ‘𝑦))))} |
12 | 11 | wexp 8135 | . 2 ⊢ (( E We On ∧ E We On) → 𝐿 We (On × On)) |
13 | 1, 1, 12 | mp2an 690 | 1 ⊢ 𝐿 We (On × On) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 394 ∨ wo 845 = wceq 1533 ∈ wcel 2098 class class class wbr 5149 {copab 5211 E cep 5581 We wwe 5632 × cxp 5676 Oncon0 6371 ‘cfv 6549 1st c1st 7992 2nd c2nd 7993 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pr 5429 ax-un 7741 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-ral 3051 df-rex 3060 df-rab 3419 df-v 3463 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-int 4951 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-ord 6374 df-on 6375 df-iota 6501 df-fun 6551 df-fv 6557 df-1st 7994 df-2nd 7995 |
This theorem is referenced by: r0weon 10037 |
Copyright terms: Public domain | W3C validator |