![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xpcomen | Structured version Visualization version GIF version |
Description: Commutative law for equinumerosity of Cartesian product. Proposition 4.22(d) of [Mendelson] p. 254. (Contributed by NM, 5-Jan-2004.) (Revised by Mario Carneiro, 15-Nov-2014.) |
Ref | Expression |
---|---|
xpcomen.1 | ⊢ 𝐴 ∈ V |
xpcomen.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
xpcomen | ⊢ (𝐴 × 𝐵) ≈ (𝐵 × 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpcomen.1 | . . 3 ⊢ 𝐴 ∈ V | |
2 | xpcomen.2 | . . 3 ⊢ 𝐵 ∈ V | |
3 | 1, 2 | xpex 7788 | . 2 ⊢ (𝐴 × 𝐵) ∈ V |
4 | 2, 1 | xpex 7788 | . 2 ⊢ (𝐵 × 𝐴) ∈ V |
5 | eqid 2740 | . . 3 ⊢ (𝑥 ∈ (𝐴 × 𝐵) ↦ ∪ ◡{𝑥}) = (𝑥 ∈ (𝐴 × 𝐵) ↦ ∪ ◡{𝑥}) | |
6 | 5 | xpcomf1o 9127 | . 2 ⊢ (𝑥 ∈ (𝐴 × 𝐵) ↦ ∪ ◡{𝑥}):(𝐴 × 𝐵)–1-1-onto→(𝐵 × 𝐴) |
7 | f1oen2g 9028 | . 2 ⊢ (((𝐴 × 𝐵) ∈ V ∧ (𝐵 × 𝐴) ∈ V ∧ (𝑥 ∈ (𝐴 × 𝐵) ↦ ∪ ◡{𝑥}):(𝐴 × 𝐵)–1-1-onto→(𝐵 × 𝐴)) → (𝐴 × 𝐵) ≈ (𝐵 × 𝐴)) | |
8 | 3, 4, 6, 7 | mp3an 1461 | 1 ⊢ (𝐴 × 𝐵) ≈ (𝐵 × 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 Vcvv 3488 {csn 4648 ∪ cuni 4931 class class class wbr 5166 ↦ cmpt 5249 × cxp 5698 ◡ccnv 5699 –1-1-onto→wf1o 6572 ≈ cen 9000 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-1st 8030 df-2nd 8031 df-en 9004 |
This theorem is referenced by: xpcomeng 9130 ackbij1lem5 10292 hashxplem 14482 |
Copyright terms: Public domain | W3C validator |