| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xpcomen | Structured version Visualization version GIF version | ||
| Description: Commutative law for equinumerosity of Cartesian product. Proposition 4.22(d) of [Mendelson] p. 254. (Contributed by NM, 5-Jan-2004.) (Revised by Mario Carneiro, 15-Nov-2014.) |
| Ref | Expression |
|---|---|
| xpcomen.1 | ⊢ 𝐴 ∈ V |
| xpcomen.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| xpcomen | ⊢ (𝐴 × 𝐵) ≈ (𝐵 × 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpcomen.1 | . . 3 ⊢ 𝐴 ∈ V | |
| 2 | xpcomen.2 | . . 3 ⊢ 𝐵 ∈ V | |
| 3 | 1, 2 | xpex 7732 | . 2 ⊢ (𝐴 × 𝐵) ∈ V |
| 4 | 2, 1 | xpex 7732 | . 2 ⊢ (𝐵 × 𝐴) ∈ V |
| 5 | eqid 2730 | . . 3 ⊢ (𝑥 ∈ (𝐴 × 𝐵) ↦ ∪ ◡{𝑥}) = (𝑥 ∈ (𝐴 × 𝐵) ↦ ∪ ◡{𝑥}) | |
| 6 | 5 | xpcomf1o 9035 | . 2 ⊢ (𝑥 ∈ (𝐴 × 𝐵) ↦ ∪ ◡{𝑥}):(𝐴 × 𝐵)–1-1-onto→(𝐵 × 𝐴) |
| 7 | f1oen2g 8943 | . 2 ⊢ (((𝐴 × 𝐵) ∈ V ∧ (𝐵 × 𝐴) ∈ V ∧ (𝑥 ∈ (𝐴 × 𝐵) ↦ ∪ ◡{𝑥}):(𝐴 × 𝐵)–1-1-onto→(𝐵 × 𝐴)) → (𝐴 × 𝐵) ≈ (𝐵 × 𝐴)) | |
| 8 | 3, 4, 6, 7 | mp3an 1463 | 1 ⊢ (𝐴 × 𝐵) ≈ (𝐵 × 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Vcvv 3450 {csn 4592 ∪ cuni 4874 class class class wbr 5110 ↦ cmpt 5191 × cxp 5639 ◡ccnv 5640 –1-1-onto→wf1o 6513 ≈ cen 8918 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-1st 7971 df-2nd 7972 df-en 8922 |
| This theorem is referenced by: xpcomeng 9038 ackbij1lem5 10183 hashxplem 14405 |
| Copyright terms: Public domain | W3C validator |