MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpcomen Structured version   Visualization version   GIF version

Theorem xpcomen 9129
Description: Commutative law for equinumerosity of Cartesian product. Proposition 4.22(d) of [Mendelson] p. 254. (Contributed by NM, 5-Jan-2004.) (Revised by Mario Carneiro, 15-Nov-2014.)
Hypotheses
Ref Expression
xpcomen.1 𝐴 ∈ V
xpcomen.2 𝐵 ∈ V
Assertion
Ref Expression
xpcomen (𝐴 × 𝐵) ≈ (𝐵 × 𝐴)

Proof of Theorem xpcomen
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 xpcomen.1 . . 3 𝐴 ∈ V
2 xpcomen.2 . . 3 𝐵 ∈ V
31, 2xpex 7788 . 2 (𝐴 × 𝐵) ∈ V
42, 1xpex 7788 . 2 (𝐵 × 𝐴) ∈ V
5 eqid 2740 . . 3 (𝑥 ∈ (𝐴 × 𝐵) ↦ {𝑥}) = (𝑥 ∈ (𝐴 × 𝐵) ↦ {𝑥})
65xpcomf1o 9127 . 2 (𝑥 ∈ (𝐴 × 𝐵) ↦ {𝑥}):(𝐴 × 𝐵)–1-1-onto→(𝐵 × 𝐴)
7 f1oen2g 9028 . 2 (((𝐴 × 𝐵) ∈ V ∧ (𝐵 × 𝐴) ∈ V ∧ (𝑥 ∈ (𝐴 × 𝐵) ↦ {𝑥}):(𝐴 × 𝐵)–1-1-onto→(𝐵 × 𝐴)) → (𝐴 × 𝐵) ≈ (𝐵 × 𝐴))
83, 4, 6, 7mp3an 1461 1 (𝐴 × 𝐵) ≈ (𝐵 × 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wcel 2108  Vcvv 3488  {csn 4648   cuni 4931   class class class wbr 5166  cmpt 5249   × cxp 5698  ccnv 5699  1-1-ontowf1o 6572  cen 9000
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-1st 8030  df-2nd 8031  df-en 9004
This theorem is referenced by:  xpcomeng  9130  ackbij1lem5  10292  hashxplem  14482
  Copyright terms: Public domain W3C validator