| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xpcomen | Structured version Visualization version GIF version | ||
| Description: Commutative law for equinumerosity of Cartesian product. Proposition 4.22(d) of [Mendelson] p. 254. (Contributed by NM, 5-Jan-2004.) (Revised by Mario Carneiro, 15-Nov-2014.) |
| Ref | Expression |
|---|---|
| xpcomen.1 | ⊢ 𝐴 ∈ V |
| xpcomen.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| xpcomen | ⊢ (𝐴 × 𝐵) ≈ (𝐵 × 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpcomen.1 | . . 3 ⊢ 𝐴 ∈ V | |
| 2 | xpcomen.2 | . . 3 ⊢ 𝐵 ∈ V | |
| 3 | 1, 2 | xpex 7693 | . 2 ⊢ (𝐴 × 𝐵) ∈ V |
| 4 | 2, 1 | xpex 7693 | . 2 ⊢ (𝐵 × 𝐴) ∈ V |
| 5 | eqid 2729 | . . 3 ⊢ (𝑥 ∈ (𝐴 × 𝐵) ↦ ∪ ◡{𝑥}) = (𝑥 ∈ (𝐴 × 𝐵) ↦ ∪ ◡{𝑥}) | |
| 6 | 5 | xpcomf1o 8990 | . 2 ⊢ (𝑥 ∈ (𝐴 × 𝐵) ↦ ∪ ◡{𝑥}):(𝐴 × 𝐵)–1-1-onto→(𝐵 × 𝐴) |
| 7 | f1oen2g 8901 | . 2 ⊢ (((𝐴 × 𝐵) ∈ V ∧ (𝐵 × 𝐴) ∈ V ∧ (𝑥 ∈ (𝐴 × 𝐵) ↦ ∪ ◡{𝑥}):(𝐴 × 𝐵)–1-1-onto→(𝐵 × 𝐴)) → (𝐴 × 𝐵) ≈ (𝐵 × 𝐴)) | |
| 8 | 3, 4, 6, 7 | mp3an 1463 | 1 ⊢ (𝐴 × 𝐵) ≈ (𝐵 × 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Vcvv 3438 {csn 4579 ∪ cuni 4861 class class class wbr 5095 ↦ cmpt 5176 × cxp 5621 ◡ccnv 5622 –1-1-onto→wf1o 6485 ≈ cen 8876 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-1st 7931 df-2nd 7932 df-en 8880 |
| This theorem is referenced by: xpcomeng 8993 ackbij1lem5 10136 hashxplem 14358 |
| Copyright terms: Public domain | W3C validator |