MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpcomen Structured version   Visualization version   GIF version

Theorem xpcomen 9063
Description: Commutative law for equinumerosity of Cartesian product. Proposition 4.22(d) of [Mendelson] p. 254. (Contributed by NM, 5-Jan-2004.) (Revised by Mario Carneiro, 15-Nov-2014.)
Hypotheses
Ref Expression
xpcomen.1 𝐴 ∈ V
xpcomen.2 𝐵 ∈ V
Assertion
Ref Expression
xpcomen (𝐴 × 𝐵) ≈ (𝐵 × 𝐴)

Proof of Theorem xpcomen
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 xpcomen.1 . . 3 𝐴 ∈ V
2 xpcomen.2 . . 3 𝐵 ∈ V
31, 2xpex 7740 . 2 (𝐴 × 𝐵) ∈ V
42, 1xpex 7740 . 2 (𝐵 × 𝐴) ∈ V
5 eqid 2733 . . 3 (𝑥 ∈ (𝐴 × 𝐵) ↦ {𝑥}) = (𝑥 ∈ (𝐴 × 𝐵) ↦ {𝑥})
65xpcomf1o 9061 . 2 (𝑥 ∈ (𝐴 × 𝐵) ↦ {𝑥}):(𝐴 × 𝐵)–1-1-onto→(𝐵 × 𝐴)
7 f1oen2g 8964 . 2 (((𝐴 × 𝐵) ∈ V ∧ (𝐵 × 𝐴) ∈ V ∧ (𝑥 ∈ (𝐴 × 𝐵) ↦ {𝑥}):(𝐴 × 𝐵)–1-1-onto→(𝐵 × 𝐴)) → (𝐴 × 𝐵) ≈ (𝐵 × 𝐴))
83, 4, 6, 7mp3an 1462 1 (𝐴 × 𝐵) ≈ (𝐵 × 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wcel 2107  Vcvv 3475  {csn 4629   cuni 4909   class class class wbr 5149  cmpt 5232   × cxp 5675  ccnv 5676  1-1-ontowf1o 6543  cen 8936
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-1st 7975  df-2nd 7976  df-en 8940
This theorem is referenced by:  xpcomeng  9064  ackbij1lem5  10219  hashxplem  14393
  Copyright terms: Public domain W3C validator