MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpcomen Structured version   Visualization version   GIF version

Theorem xpcomen 8586
Description: Commutative law for equinumerosity of Cartesian product. Proposition 4.22(d) of [Mendelson] p. 254. (Contributed by NM, 5-Jan-2004.) (Revised by Mario Carneiro, 15-Nov-2014.)
Hypotheses
Ref Expression
xpcomen.1 𝐴 ∈ V
xpcomen.2 𝐵 ∈ V
Assertion
Ref Expression
xpcomen (𝐴 × 𝐵) ≈ (𝐵 × 𝐴)

Proof of Theorem xpcomen
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 xpcomen.1 . . 3 𝐴 ∈ V
2 xpcomen.2 . . 3 𝐵 ∈ V
31, 2xpex 7454 . 2 (𝐴 × 𝐵) ∈ V
42, 1xpex 7454 . 2 (𝐵 × 𝐴) ∈ V
5 eqid 2820 . . 3 (𝑥 ∈ (𝐴 × 𝐵) ↦ {𝑥}) = (𝑥 ∈ (𝐴 × 𝐵) ↦ {𝑥})
65xpcomf1o 8584 . 2 (𝑥 ∈ (𝐴 × 𝐵) ↦ {𝑥}):(𝐴 × 𝐵)–1-1-onto→(𝐵 × 𝐴)
7 f1oen2g 8504 . 2 (((𝐴 × 𝐵) ∈ V ∧ (𝐵 × 𝐴) ∈ V ∧ (𝑥 ∈ (𝐴 × 𝐵) ↦ {𝑥}):(𝐴 × 𝐵)–1-1-onto→(𝐵 × 𝐴)) → (𝐴 × 𝐵) ≈ (𝐵 × 𝐴))
83, 4, 6, 7mp3an 1457 1 (𝐴 × 𝐵) ≈ (𝐵 × 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wcel 2114  Vcvv 3473  {csn 4543   cuni 4814   class class class wbr 5042  cmpt 5122   × cxp 5529  ccnv 5530  1-1-ontowf1o 6330  cen 8484
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2792  ax-sep 5179  ax-nul 5186  ax-pow 5242  ax-pr 5306  ax-un 7439
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2891  df-nfc 2959  df-ne 3007  df-ral 3130  df-rex 3131  df-rab 3134  df-v 3475  df-sbc 3753  df-dif 3916  df-un 3918  df-in 3920  df-ss 3930  df-nul 4270  df-if 4444  df-pw 4517  df-sn 4544  df-pr 4546  df-op 4550  df-uni 4815  df-br 5043  df-opab 5105  df-mpt 5123  df-id 5436  df-xp 5537  df-rel 5538  df-cnv 5539  df-co 5540  df-dm 5541  df-rn 5542  df-iota 6290  df-fun 6333  df-fn 6334  df-f 6335  df-f1 6336  df-fo 6337  df-f1o 6338  df-fv 6339  df-1st 7667  df-2nd 7668  df-en 8488
This theorem is referenced by:  xpcomeng  8587  ackbij1lem5  9624  hashxplem  13779
  Copyright terms: Public domain W3C validator