MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpcomf1o Structured version   Visualization version   GIF version

Theorem xpcomf1o 8988
Description: The canonical bijection from (𝐴 × 𝐵) to (𝐵 × 𝐴). (Contributed by Mario Carneiro, 23-Apr-2014.)
Hypothesis
Ref Expression
xpcomf1o.1 𝐹 = (𝑥 ∈ (𝐴 × 𝐵) ↦ {𝑥})
Assertion
Ref Expression
xpcomf1o 𝐹:(𝐴 × 𝐵)–1-1-onto→(𝐵 × 𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem xpcomf1o
StepHypRef Expression
1 relxp 5639 . . . 4 Rel (𝐴 × 𝐵)
2 cnvf1o 8049 . . . 4 (Rel (𝐴 × 𝐵) → (𝑥 ∈ (𝐴 × 𝐵) ↦ {𝑥}):(𝐴 × 𝐵)–1-1-onto(𝐴 × 𝐵))
31, 2ax-mp 5 . . 3 (𝑥 ∈ (𝐴 × 𝐵) ↦ {𝑥}):(𝐴 × 𝐵)–1-1-onto(𝐴 × 𝐵)
4 xpcomf1o.1 . . . 4 𝐹 = (𝑥 ∈ (𝐴 × 𝐵) ↦ {𝑥})
5 f1oeq1 6758 . . . 4 (𝐹 = (𝑥 ∈ (𝐴 × 𝐵) ↦ {𝑥}) → (𝐹:(𝐴 × 𝐵)–1-1-onto(𝐴 × 𝐵) ↔ (𝑥 ∈ (𝐴 × 𝐵) ↦ {𝑥}):(𝐴 × 𝐵)–1-1-onto(𝐴 × 𝐵)))
64, 5ax-mp 5 . . 3 (𝐹:(𝐴 × 𝐵)–1-1-onto(𝐴 × 𝐵) ↔ (𝑥 ∈ (𝐴 × 𝐵) ↦ {𝑥}):(𝐴 × 𝐵)–1-1-onto(𝐴 × 𝐵))
73, 6mpbir 231 . 2 𝐹:(𝐴 × 𝐵)–1-1-onto(𝐴 × 𝐵)
8 cnvxp 6111 . . 3 (𝐴 × 𝐵) = (𝐵 × 𝐴)
9 f1oeq3 6760 . . 3 ((𝐴 × 𝐵) = (𝐵 × 𝐴) → (𝐹:(𝐴 × 𝐵)–1-1-onto(𝐴 × 𝐵) ↔ 𝐹:(𝐴 × 𝐵)–1-1-onto→(𝐵 × 𝐴)))
108, 9ax-mp 5 . 2 (𝐹:(𝐴 × 𝐵)–1-1-onto(𝐴 × 𝐵) ↔ 𝐹:(𝐴 × 𝐵)–1-1-onto→(𝐵 × 𝐴))
117, 10mpbi 230 1 𝐹:(𝐴 × 𝐵)–1-1-onto→(𝐵 × 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1541  {csn 4577   cuni 4860  cmpt 5176   × cxp 5619  ccnv 5620  Rel wrel 5626  1-1-ontowf1o 6487
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7676
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-1st 7929  df-2nd 7930
This theorem is referenced by:  xpcomco  8989  xpcomen  8990  omf1o  9002  swapf1f1o  49403  swapf2f1o  49404  swapf2f1oaALT  49406
  Copyright terms: Public domain W3C validator