![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xpcomf1o | Structured version Visualization version GIF version |
Description: The canonical bijection from (𝐴 × 𝐵) to (𝐵 × 𝐴). (Contributed by Mario Carneiro, 23-Apr-2014.) |
Ref | Expression |
---|---|
xpcomf1o.1 | ⊢ 𝐹 = (𝑥 ∈ (𝐴 × 𝐵) ↦ ∪ ◡{𝑥}) |
Ref | Expression |
---|---|
xpcomf1o | ⊢ 𝐹:(𝐴 × 𝐵)–1-1-onto→(𝐵 × 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relxp 5656 | . . . 4 ⊢ Rel (𝐴 × 𝐵) | |
2 | cnvf1o 8048 | . . . 4 ⊢ (Rel (𝐴 × 𝐵) → (𝑥 ∈ (𝐴 × 𝐵) ↦ ∪ ◡{𝑥}):(𝐴 × 𝐵)–1-1-onto→◡(𝐴 × 𝐵)) | |
3 | 1, 2 | ax-mp 5 | . . 3 ⊢ (𝑥 ∈ (𝐴 × 𝐵) ↦ ∪ ◡{𝑥}):(𝐴 × 𝐵)–1-1-onto→◡(𝐴 × 𝐵) |
4 | xpcomf1o.1 | . . . 4 ⊢ 𝐹 = (𝑥 ∈ (𝐴 × 𝐵) ↦ ∪ ◡{𝑥}) | |
5 | f1oeq1 6777 | . . . 4 ⊢ (𝐹 = (𝑥 ∈ (𝐴 × 𝐵) ↦ ∪ ◡{𝑥}) → (𝐹:(𝐴 × 𝐵)–1-1-onto→◡(𝐴 × 𝐵) ↔ (𝑥 ∈ (𝐴 × 𝐵) ↦ ∪ ◡{𝑥}):(𝐴 × 𝐵)–1-1-onto→◡(𝐴 × 𝐵))) | |
6 | 4, 5 | ax-mp 5 | . . 3 ⊢ (𝐹:(𝐴 × 𝐵)–1-1-onto→◡(𝐴 × 𝐵) ↔ (𝑥 ∈ (𝐴 × 𝐵) ↦ ∪ ◡{𝑥}):(𝐴 × 𝐵)–1-1-onto→◡(𝐴 × 𝐵)) |
7 | 3, 6 | mpbir 230 | . 2 ⊢ 𝐹:(𝐴 × 𝐵)–1-1-onto→◡(𝐴 × 𝐵) |
8 | cnvxp 6114 | . . 3 ⊢ ◡(𝐴 × 𝐵) = (𝐵 × 𝐴) | |
9 | f1oeq3 6779 | . . 3 ⊢ (◡(𝐴 × 𝐵) = (𝐵 × 𝐴) → (𝐹:(𝐴 × 𝐵)–1-1-onto→◡(𝐴 × 𝐵) ↔ 𝐹:(𝐴 × 𝐵)–1-1-onto→(𝐵 × 𝐴))) | |
10 | 8, 9 | ax-mp 5 | . 2 ⊢ (𝐹:(𝐴 × 𝐵)–1-1-onto→◡(𝐴 × 𝐵) ↔ 𝐹:(𝐴 × 𝐵)–1-1-onto→(𝐵 × 𝐴)) |
11 | 7, 10 | mpbi 229 | 1 ⊢ 𝐹:(𝐴 × 𝐵)–1-1-onto→(𝐵 × 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1542 {csn 4591 ∪ cuni 4870 ↦ cmpt 5193 × cxp 5636 ◡ccnv 5637 Rel wrel 5643 –1-1-onto→wf1o 6500 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 ax-sep 5261 ax-nul 5268 ax-pow 5325 ax-pr 5389 ax-un 7677 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2890 df-ne 2945 df-ral 3066 df-rex 3075 df-rab 3411 df-v 3450 df-dif 3918 df-un 3920 df-in 3922 df-ss 3932 df-nul 4288 df-if 4492 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4871 df-br 5111 df-opab 5173 df-mpt 5194 df-id 5536 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-iota 6453 df-fun 6503 df-fn 6504 df-f 6505 df-f1 6506 df-fo 6507 df-f1o 6508 df-fv 6509 df-1st 7926 df-2nd 7927 |
This theorem is referenced by: xpcomco 9013 xpcomen 9014 omf1o 9026 |
Copyright terms: Public domain | W3C validator |