| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xpcomf1o | Structured version Visualization version GIF version | ||
| Description: The canonical bijection from (𝐴 × 𝐵) to (𝐵 × 𝐴). (Contributed by Mario Carneiro, 23-Apr-2014.) |
| Ref | Expression |
|---|---|
| xpcomf1o.1 | ⊢ 𝐹 = (𝑥 ∈ (𝐴 × 𝐵) ↦ ∪ ◡{𝑥}) |
| Ref | Expression |
|---|---|
| xpcomf1o | ⊢ 𝐹:(𝐴 × 𝐵)–1-1-onto→(𝐵 × 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relxp 5656 | . . . 4 ⊢ Rel (𝐴 × 𝐵) | |
| 2 | cnvf1o 8090 | . . . 4 ⊢ (Rel (𝐴 × 𝐵) → (𝑥 ∈ (𝐴 × 𝐵) ↦ ∪ ◡{𝑥}):(𝐴 × 𝐵)–1-1-onto→◡(𝐴 × 𝐵)) | |
| 3 | 1, 2 | ax-mp 5 | . . 3 ⊢ (𝑥 ∈ (𝐴 × 𝐵) ↦ ∪ ◡{𝑥}):(𝐴 × 𝐵)–1-1-onto→◡(𝐴 × 𝐵) |
| 4 | xpcomf1o.1 | . . . 4 ⊢ 𝐹 = (𝑥 ∈ (𝐴 × 𝐵) ↦ ∪ ◡{𝑥}) | |
| 5 | f1oeq1 6788 | . . . 4 ⊢ (𝐹 = (𝑥 ∈ (𝐴 × 𝐵) ↦ ∪ ◡{𝑥}) → (𝐹:(𝐴 × 𝐵)–1-1-onto→◡(𝐴 × 𝐵) ↔ (𝑥 ∈ (𝐴 × 𝐵) ↦ ∪ ◡{𝑥}):(𝐴 × 𝐵)–1-1-onto→◡(𝐴 × 𝐵))) | |
| 6 | 4, 5 | ax-mp 5 | . . 3 ⊢ (𝐹:(𝐴 × 𝐵)–1-1-onto→◡(𝐴 × 𝐵) ↔ (𝑥 ∈ (𝐴 × 𝐵) ↦ ∪ ◡{𝑥}):(𝐴 × 𝐵)–1-1-onto→◡(𝐴 × 𝐵)) |
| 7 | 3, 6 | mpbir 231 | . 2 ⊢ 𝐹:(𝐴 × 𝐵)–1-1-onto→◡(𝐴 × 𝐵) |
| 8 | cnvxp 6130 | . . 3 ⊢ ◡(𝐴 × 𝐵) = (𝐵 × 𝐴) | |
| 9 | f1oeq3 6790 | . . 3 ⊢ (◡(𝐴 × 𝐵) = (𝐵 × 𝐴) → (𝐹:(𝐴 × 𝐵)–1-1-onto→◡(𝐴 × 𝐵) ↔ 𝐹:(𝐴 × 𝐵)–1-1-onto→(𝐵 × 𝐴))) | |
| 10 | 8, 9 | ax-mp 5 | . 2 ⊢ (𝐹:(𝐴 × 𝐵)–1-1-onto→◡(𝐴 × 𝐵) ↔ 𝐹:(𝐴 × 𝐵)–1-1-onto→(𝐵 × 𝐴)) |
| 11 | 7, 10 | mpbi 230 | 1 ⊢ 𝐹:(𝐴 × 𝐵)–1-1-onto→(𝐵 × 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 {csn 4589 ∪ cuni 4871 ↦ cmpt 5188 × cxp 5636 ◡ccnv 5637 Rel wrel 5643 –1-1-onto→wf1o 6510 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-1st 7968 df-2nd 7969 |
| This theorem is referenced by: xpcomco 9031 xpcomen 9032 omf1o 9044 swapf1f1o 49264 swapf2f1o 49265 swapf2f1oaALT 49267 |
| Copyright terms: Public domain | W3C validator |