MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpcomf1o Structured version   Visualization version   GIF version

Theorem xpcomf1o 8979
Description: The canonical bijection from (𝐴 × 𝐵) to (𝐵 × 𝐴). (Contributed by Mario Carneiro, 23-Apr-2014.)
Hypothesis
Ref Expression
xpcomf1o.1 𝐹 = (𝑥 ∈ (𝐴 × 𝐵) ↦ {𝑥})
Assertion
Ref Expression
xpcomf1o 𝐹:(𝐴 × 𝐵)–1-1-onto→(𝐵 × 𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem xpcomf1o
StepHypRef Expression
1 relxp 5634 . . . 4 Rel (𝐴 × 𝐵)
2 cnvf1o 8041 . . . 4 (Rel (𝐴 × 𝐵) → (𝑥 ∈ (𝐴 × 𝐵) ↦ {𝑥}):(𝐴 × 𝐵)–1-1-onto(𝐴 × 𝐵))
31, 2ax-mp 5 . . 3 (𝑥 ∈ (𝐴 × 𝐵) ↦ {𝑥}):(𝐴 × 𝐵)–1-1-onto(𝐴 × 𝐵)
4 xpcomf1o.1 . . . 4 𝐹 = (𝑥 ∈ (𝐴 × 𝐵) ↦ {𝑥})
5 f1oeq1 6751 . . . 4 (𝐹 = (𝑥 ∈ (𝐴 × 𝐵) ↦ {𝑥}) → (𝐹:(𝐴 × 𝐵)–1-1-onto(𝐴 × 𝐵) ↔ (𝑥 ∈ (𝐴 × 𝐵) ↦ {𝑥}):(𝐴 × 𝐵)–1-1-onto(𝐴 × 𝐵)))
64, 5ax-mp 5 . . 3 (𝐹:(𝐴 × 𝐵)–1-1-onto(𝐴 × 𝐵) ↔ (𝑥 ∈ (𝐴 × 𝐵) ↦ {𝑥}):(𝐴 × 𝐵)–1-1-onto(𝐴 × 𝐵))
73, 6mpbir 231 . 2 𝐹:(𝐴 × 𝐵)–1-1-onto(𝐴 × 𝐵)
8 cnvxp 6104 . . 3 (𝐴 × 𝐵) = (𝐵 × 𝐴)
9 f1oeq3 6753 . . 3 ((𝐴 × 𝐵) = (𝐵 × 𝐴) → (𝐹:(𝐴 × 𝐵)–1-1-onto(𝐴 × 𝐵) ↔ 𝐹:(𝐴 × 𝐵)–1-1-onto→(𝐵 × 𝐴)))
108, 9ax-mp 5 . 2 (𝐹:(𝐴 × 𝐵)–1-1-onto(𝐴 × 𝐵) ↔ 𝐹:(𝐴 × 𝐵)–1-1-onto→(𝐵 × 𝐴))
117, 10mpbi 230 1 𝐹:(𝐴 × 𝐵)–1-1-onto→(𝐵 × 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1541  {csn 4576   cuni 4859  cmpt 5172   × cxp 5614  ccnv 5615  Rel wrel 5621  1-1-ontowf1o 6480
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-1st 7921  df-2nd 7922
This theorem is referenced by:  xpcomco  8980  xpcomen  8981  omf1o  8993  swapf1f1o  49313  swapf2f1o  49314  swapf2f1oaALT  49316
  Copyright terms: Public domain W3C validator