Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > xpcomf1o | Structured version Visualization version GIF version |
Description: The canonical bijection from (𝐴 × 𝐵) to (𝐵 × 𝐴). (Contributed by Mario Carneiro, 23-Apr-2014.) |
Ref | Expression |
---|---|
xpcomf1o.1 | ⊢ 𝐹 = (𝑥 ∈ (𝐴 × 𝐵) ↦ ∪ ◡{𝑥}) |
Ref | Expression |
---|---|
xpcomf1o | ⊢ 𝐹:(𝐴 × 𝐵)–1-1-onto→(𝐵 × 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relxp 5598 | . . . 4 ⊢ Rel (𝐴 × 𝐵) | |
2 | cnvf1o 7922 | . . . 4 ⊢ (Rel (𝐴 × 𝐵) → (𝑥 ∈ (𝐴 × 𝐵) ↦ ∪ ◡{𝑥}):(𝐴 × 𝐵)–1-1-onto→◡(𝐴 × 𝐵)) | |
3 | 1, 2 | ax-mp 5 | . . 3 ⊢ (𝑥 ∈ (𝐴 × 𝐵) ↦ ∪ ◡{𝑥}):(𝐴 × 𝐵)–1-1-onto→◡(𝐴 × 𝐵) |
4 | xpcomf1o.1 | . . . 4 ⊢ 𝐹 = (𝑥 ∈ (𝐴 × 𝐵) ↦ ∪ ◡{𝑥}) | |
5 | f1oeq1 6688 | . . . 4 ⊢ (𝐹 = (𝑥 ∈ (𝐴 × 𝐵) ↦ ∪ ◡{𝑥}) → (𝐹:(𝐴 × 𝐵)–1-1-onto→◡(𝐴 × 𝐵) ↔ (𝑥 ∈ (𝐴 × 𝐵) ↦ ∪ ◡{𝑥}):(𝐴 × 𝐵)–1-1-onto→◡(𝐴 × 𝐵))) | |
6 | 4, 5 | ax-mp 5 | . . 3 ⊢ (𝐹:(𝐴 × 𝐵)–1-1-onto→◡(𝐴 × 𝐵) ↔ (𝑥 ∈ (𝐴 × 𝐵) ↦ ∪ ◡{𝑥}):(𝐴 × 𝐵)–1-1-onto→◡(𝐴 × 𝐵)) |
7 | 3, 6 | mpbir 230 | . 2 ⊢ 𝐹:(𝐴 × 𝐵)–1-1-onto→◡(𝐴 × 𝐵) |
8 | cnvxp 6049 | . . 3 ⊢ ◡(𝐴 × 𝐵) = (𝐵 × 𝐴) | |
9 | f1oeq3 6690 | . . 3 ⊢ (◡(𝐴 × 𝐵) = (𝐵 × 𝐴) → (𝐹:(𝐴 × 𝐵)–1-1-onto→◡(𝐴 × 𝐵) ↔ 𝐹:(𝐴 × 𝐵)–1-1-onto→(𝐵 × 𝐴))) | |
10 | 8, 9 | ax-mp 5 | . 2 ⊢ (𝐹:(𝐴 × 𝐵)–1-1-onto→◡(𝐴 × 𝐵) ↔ 𝐹:(𝐴 × 𝐵)–1-1-onto→(𝐵 × 𝐴)) |
11 | 7, 10 | mpbi 229 | 1 ⊢ 𝐹:(𝐴 × 𝐵)–1-1-onto→(𝐵 × 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1539 {csn 4558 ∪ cuni 4836 ↦ cmpt 5153 × cxp 5578 ◡ccnv 5579 Rel wrel 5585 –1-1-onto→wf1o 6417 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-1st 7804 df-2nd 7805 |
This theorem is referenced by: xpcomco 8802 xpcomen 8803 omf1o 8815 |
Copyright terms: Public domain | W3C validator |