MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  omf1o Structured version   Visualization version   GIF version

Theorem omf1o 8993
Description: Construct an explicit bijection from 𝐴 ·o 𝐵 to 𝐵 ·o 𝐴. (Contributed by Mario Carneiro, 30-May-2015.)
Hypotheses
Ref Expression
omf1o.1 𝐹 = (𝑥𝐵, 𝑦𝐴 ↦ ((𝐴 ·o 𝑥) +o 𝑦))
omf1o.2 𝐺 = (𝑥𝐵, 𝑦𝐴 ↦ ((𝐵 ·o 𝑦) +o 𝑥))
Assertion
Ref Expression
omf1o ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐺𝐹):(𝐴 ·o 𝐵)–1-1-onto→(𝐵 ·o 𝐴))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦)   𝐺(𝑥,𝑦)

Proof of Theorem omf1o
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 eqid 2731 . . . . . 6 (𝑦𝐴, 𝑥𝐵 ↦ ((𝐵 ·o 𝑦) +o 𝑥)) = (𝑦𝐴, 𝑥𝐵 ↦ ((𝐵 ·o 𝑦) +o 𝑥))
21omxpenlem 8991 . . . . 5 ((𝐵 ∈ On ∧ 𝐴 ∈ On) → (𝑦𝐴, 𝑥𝐵 ↦ ((𝐵 ·o 𝑦) +o 𝑥)):(𝐴 × 𝐵)–1-1-onto→(𝐵 ·o 𝐴))
32ancoms 458 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝑦𝐴, 𝑥𝐵 ↦ ((𝐵 ·o 𝑦) +o 𝑥)):(𝐴 × 𝐵)–1-1-onto→(𝐵 ·o 𝐴))
4 eqid 2731 . . . . 5 (𝑧 ∈ (𝐵 × 𝐴) ↦ {𝑧}) = (𝑧 ∈ (𝐵 × 𝐴) ↦ {𝑧})
54xpcomf1o 8979 . . . 4 (𝑧 ∈ (𝐵 × 𝐴) ↦ {𝑧}):(𝐵 × 𝐴)–1-1-onto→(𝐴 × 𝐵)
6 f1oco 6786 . . . 4 (((𝑦𝐴, 𝑥𝐵 ↦ ((𝐵 ·o 𝑦) +o 𝑥)):(𝐴 × 𝐵)–1-1-onto→(𝐵 ·o 𝐴) ∧ (𝑧 ∈ (𝐵 × 𝐴) ↦ {𝑧}):(𝐵 × 𝐴)–1-1-onto→(𝐴 × 𝐵)) → ((𝑦𝐴, 𝑥𝐵 ↦ ((𝐵 ·o 𝑦) +o 𝑥)) ∘ (𝑧 ∈ (𝐵 × 𝐴) ↦ {𝑧})):(𝐵 × 𝐴)–1-1-onto→(𝐵 ·o 𝐴))
73, 5, 6sylancl 586 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝑦𝐴, 𝑥𝐵 ↦ ((𝐵 ·o 𝑦) +o 𝑥)) ∘ (𝑧 ∈ (𝐵 × 𝐴) ↦ {𝑧})):(𝐵 × 𝐴)–1-1-onto→(𝐵 ·o 𝐴))
8 omf1o.2 . . . . 5 𝐺 = (𝑥𝐵, 𝑦𝐴 ↦ ((𝐵 ·o 𝑦) +o 𝑥))
94, 1xpcomco 8980 . . . . 5 ((𝑦𝐴, 𝑥𝐵 ↦ ((𝐵 ·o 𝑦) +o 𝑥)) ∘ (𝑧 ∈ (𝐵 × 𝐴) ↦ {𝑧})) = (𝑥𝐵, 𝑦𝐴 ↦ ((𝐵 ·o 𝑦) +o 𝑥))
108, 9eqtr4i 2757 . . . 4 𝐺 = ((𝑦𝐴, 𝑥𝐵 ↦ ((𝐵 ·o 𝑦) +o 𝑥)) ∘ (𝑧 ∈ (𝐵 × 𝐴) ↦ {𝑧}))
11 f1oeq1 6751 . . . 4 (𝐺 = ((𝑦𝐴, 𝑥𝐵 ↦ ((𝐵 ·o 𝑦) +o 𝑥)) ∘ (𝑧 ∈ (𝐵 × 𝐴) ↦ {𝑧})) → (𝐺:(𝐵 × 𝐴)–1-1-onto→(𝐵 ·o 𝐴) ↔ ((𝑦𝐴, 𝑥𝐵 ↦ ((𝐵 ·o 𝑦) +o 𝑥)) ∘ (𝑧 ∈ (𝐵 × 𝐴) ↦ {𝑧})):(𝐵 × 𝐴)–1-1-onto→(𝐵 ·o 𝐴)))
1210, 11ax-mp 5 . . 3 (𝐺:(𝐵 × 𝐴)–1-1-onto→(𝐵 ·o 𝐴) ↔ ((𝑦𝐴, 𝑥𝐵 ↦ ((𝐵 ·o 𝑦) +o 𝑥)) ∘ (𝑧 ∈ (𝐵 × 𝐴) ↦ {𝑧})):(𝐵 × 𝐴)–1-1-onto→(𝐵 ·o 𝐴))
137, 12sylibr 234 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐺:(𝐵 × 𝐴)–1-1-onto→(𝐵 ·o 𝐴))
14 omf1o.1 . . . 4 𝐹 = (𝑥𝐵, 𝑦𝐴 ↦ ((𝐴 ·o 𝑥) +o 𝑦))
1514omxpenlem 8991 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐹:(𝐵 × 𝐴)–1-1-onto→(𝐴 ·o 𝐵))
16 f1ocnv 6775 . . 3 (𝐹:(𝐵 × 𝐴)–1-1-onto→(𝐴 ·o 𝐵) → 𝐹:(𝐴 ·o 𝐵)–1-1-onto→(𝐵 × 𝐴))
1715, 16syl 17 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐹:(𝐴 ·o 𝐵)–1-1-onto→(𝐵 × 𝐴))
18 f1oco 6786 . 2 ((𝐺:(𝐵 × 𝐴)–1-1-onto→(𝐵 ·o 𝐴) ∧ 𝐹:(𝐴 ·o 𝐵)–1-1-onto→(𝐵 × 𝐴)) → (𝐺𝐹):(𝐴 ·o 𝐵)–1-1-onto→(𝐵 ·o 𝐴))
1913, 17, 18syl2anc 584 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐺𝐹):(𝐴 ·o 𝐵)–1-1-onto→(𝐵 ·o 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  {csn 4576   cuni 4859  cmpt 5172   × cxp 5614  ccnv 5615  ccom 5620  Oncon0 6306  1-1-ontowf1o 6480  (class class class)co 7346  cmpo 7348   +o coa 8382   ·o comu 8383
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-oadd 8389  df-omul 8390
This theorem is referenced by:  cnfcom3  9594  infxpenc  9909
  Copyright terms: Public domain W3C validator