Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > omf1o | Structured version Visualization version GIF version |
Description: Construct an explicit bijection from 𝐴 ·o 𝐵 to 𝐵 ·o 𝐴. (Contributed by Mario Carneiro, 30-May-2015.) |
Ref | Expression |
---|---|
omf1o.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐴 ↦ ((𝐴 ·o 𝑥) +o 𝑦)) |
omf1o.2 | ⊢ 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐴 ↦ ((𝐵 ·o 𝑦) +o 𝑥)) |
Ref | Expression |
---|---|
omf1o | ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐺 ∘ ◡𝐹):(𝐴 ·o 𝐵)–1-1-onto→(𝐵 ·o 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . . . . 6 ⊢ (𝑦 ∈ 𝐴, 𝑥 ∈ 𝐵 ↦ ((𝐵 ·o 𝑦) +o 𝑥)) = (𝑦 ∈ 𝐴, 𝑥 ∈ 𝐵 ↦ ((𝐵 ·o 𝑦) +o 𝑥)) | |
2 | 1 | omxpenlem 8813 | . . . . 5 ⊢ ((𝐵 ∈ On ∧ 𝐴 ∈ On) → (𝑦 ∈ 𝐴, 𝑥 ∈ 𝐵 ↦ ((𝐵 ·o 𝑦) +o 𝑥)):(𝐴 × 𝐵)–1-1-onto→(𝐵 ·o 𝐴)) |
3 | 2 | ancoms 458 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝑦 ∈ 𝐴, 𝑥 ∈ 𝐵 ↦ ((𝐵 ·o 𝑦) +o 𝑥)):(𝐴 × 𝐵)–1-1-onto→(𝐵 ·o 𝐴)) |
4 | eqid 2738 | . . . . 5 ⊢ (𝑧 ∈ (𝐵 × 𝐴) ↦ ∪ ◡{𝑧}) = (𝑧 ∈ (𝐵 × 𝐴) ↦ ∪ ◡{𝑧}) | |
5 | 4 | xpcomf1o 8801 | . . . 4 ⊢ (𝑧 ∈ (𝐵 × 𝐴) ↦ ∪ ◡{𝑧}):(𝐵 × 𝐴)–1-1-onto→(𝐴 × 𝐵) |
6 | f1oco 6722 | . . . 4 ⊢ (((𝑦 ∈ 𝐴, 𝑥 ∈ 𝐵 ↦ ((𝐵 ·o 𝑦) +o 𝑥)):(𝐴 × 𝐵)–1-1-onto→(𝐵 ·o 𝐴) ∧ (𝑧 ∈ (𝐵 × 𝐴) ↦ ∪ ◡{𝑧}):(𝐵 × 𝐴)–1-1-onto→(𝐴 × 𝐵)) → ((𝑦 ∈ 𝐴, 𝑥 ∈ 𝐵 ↦ ((𝐵 ·o 𝑦) +o 𝑥)) ∘ (𝑧 ∈ (𝐵 × 𝐴) ↦ ∪ ◡{𝑧})):(𝐵 × 𝐴)–1-1-onto→(𝐵 ·o 𝐴)) | |
7 | 3, 5, 6 | sylancl 585 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝑦 ∈ 𝐴, 𝑥 ∈ 𝐵 ↦ ((𝐵 ·o 𝑦) +o 𝑥)) ∘ (𝑧 ∈ (𝐵 × 𝐴) ↦ ∪ ◡{𝑧})):(𝐵 × 𝐴)–1-1-onto→(𝐵 ·o 𝐴)) |
8 | omf1o.2 | . . . . 5 ⊢ 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐴 ↦ ((𝐵 ·o 𝑦) +o 𝑥)) | |
9 | 4, 1 | xpcomco 8802 | . . . . 5 ⊢ ((𝑦 ∈ 𝐴, 𝑥 ∈ 𝐵 ↦ ((𝐵 ·o 𝑦) +o 𝑥)) ∘ (𝑧 ∈ (𝐵 × 𝐴) ↦ ∪ ◡{𝑧})) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐴 ↦ ((𝐵 ·o 𝑦) +o 𝑥)) |
10 | 8, 9 | eqtr4i 2769 | . . . 4 ⊢ 𝐺 = ((𝑦 ∈ 𝐴, 𝑥 ∈ 𝐵 ↦ ((𝐵 ·o 𝑦) +o 𝑥)) ∘ (𝑧 ∈ (𝐵 × 𝐴) ↦ ∪ ◡{𝑧})) |
11 | f1oeq1 6688 | . . . 4 ⊢ (𝐺 = ((𝑦 ∈ 𝐴, 𝑥 ∈ 𝐵 ↦ ((𝐵 ·o 𝑦) +o 𝑥)) ∘ (𝑧 ∈ (𝐵 × 𝐴) ↦ ∪ ◡{𝑧})) → (𝐺:(𝐵 × 𝐴)–1-1-onto→(𝐵 ·o 𝐴) ↔ ((𝑦 ∈ 𝐴, 𝑥 ∈ 𝐵 ↦ ((𝐵 ·o 𝑦) +o 𝑥)) ∘ (𝑧 ∈ (𝐵 × 𝐴) ↦ ∪ ◡{𝑧})):(𝐵 × 𝐴)–1-1-onto→(𝐵 ·o 𝐴))) | |
12 | 10, 11 | ax-mp 5 | . . 3 ⊢ (𝐺:(𝐵 × 𝐴)–1-1-onto→(𝐵 ·o 𝐴) ↔ ((𝑦 ∈ 𝐴, 𝑥 ∈ 𝐵 ↦ ((𝐵 ·o 𝑦) +o 𝑥)) ∘ (𝑧 ∈ (𝐵 × 𝐴) ↦ ∪ ◡{𝑧})):(𝐵 × 𝐴)–1-1-onto→(𝐵 ·o 𝐴)) |
13 | 7, 12 | sylibr 233 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐺:(𝐵 × 𝐴)–1-1-onto→(𝐵 ·o 𝐴)) |
14 | omf1o.1 | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐴 ↦ ((𝐴 ·o 𝑥) +o 𝑦)) | |
15 | 14 | omxpenlem 8813 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐹:(𝐵 × 𝐴)–1-1-onto→(𝐴 ·o 𝐵)) |
16 | f1ocnv 6712 | . . 3 ⊢ (𝐹:(𝐵 × 𝐴)–1-1-onto→(𝐴 ·o 𝐵) → ◡𝐹:(𝐴 ·o 𝐵)–1-1-onto→(𝐵 × 𝐴)) | |
17 | 15, 16 | syl 17 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ◡𝐹:(𝐴 ·o 𝐵)–1-1-onto→(𝐵 × 𝐴)) |
18 | f1oco 6722 | . 2 ⊢ ((𝐺:(𝐵 × 𝐴)–1-1-onto→(𝐵 ·o 𝐴) ∧ ◡𝐹:(𝐴 ·o 𝐵)–1-1-onto→(𝐵 × 𝐴)) → (𝐺 ∘ ◡𝐹):(𝐴 ·o 𝐵)–1-1-onto→(𝐵 ·o 𝐴)) | |
19 | 13, 17, 18 | syl2anc 583 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐺 ∘ ◡𝐹):(𝐴 ·o 𝐵)–1-1-onto→(𝐵 ·o 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 {csn 4558 ∪ cuni 4836 ↦ cmpt 5153 × cxp 5578 ◡ccnv 5579 ∘ ccom 5584 Oncon0 6251 –1-1-onto→wf1o 6417 (class class class)co 7255 ∈ cmpo 7257 +o coa 8264 ·o comu 8265 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-oadd 8271 df-omul 8272 |
This theorem is referenced by: cnfcom3 9392 infxpenc 9705 |
Copyright terms: Public domain | W3C validator |