Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > omf1o | Structured version Visualization version GIF version |
Description: Construct an explicit bijection from 𝐴 ·o 𝐵 to 𝐵 ·o 𝐴. (Contributed by Mario Carneiro, 30-May-2015.) |
Ref | Expression |
---|---|
omf1o.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐴 ↦ ((𝐴 ·o 𝑥) +o 𝑦)) |
omf1o.2 | ⊢ 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐴 ↦ ((𝐵 ·o 𝑦) +o 𝑥)) |
Ref | Expression |
---|---|
omf1o | ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐺 ∘ ◡𝐹):(𝐴 ·o 𝐵)–1-1-onto→(𝐵 ·o 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . . . . 6 ⊢ (𝑦 ∈ 𝐴, 𝑥 ∈ 𝐵 ↦ ((𝐵 ·o 𝑦) +o 𝑥)) = (𝑦 ∈ 𝐴, 𝑥 ∈ 𝐵 ↦ ((𝐵 ·o 𝑦) +o 𝑥)) | |
2 | 1 | omxpenlem 8860 | . . . . 5 ⊢ ((𝐵 ∈ On ∧ 𝐴 ∈ On) → (𝑦 ∈ 𝐴, 𝑥 ∈ 𝐵 ↦ ((𝐵 ·o 𝑦) +o 𝑥)):(𝐴 × 𝐵)–1-1-onto→(𝐵 ·o 𝐴)) |
3 | 2 | ancoms 459 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝑦 ∈ 𝐴, 𝑥 ∈ 𝐵 ↦ ((𝐵 ·o 𝑦) +o 𝑥)):(𝐴 × 𝐵)–1-1-onto→(𝐵 ·o 𝐴)) |
4 | eqid 2738 | . . . . 5 ⊢ (𝑧 ∈ (𝐵 × 𝐴) ↦ ∪ ◡{𝑧}) = (𝑧 ∈ (𝐵 × 𝐴) ↦ ∪ ◡{𝑧}) | |
5 | 4 | xpcomf1o 8848 | . . . 4 ⊢ (𝑧 ∈ (𝐵 × 𝐴) ↦ ∪ ◡{𝑧}):(𝐵 × 𝐴)–1-1-onto→(𝐴 × 𝐵) |
6 | f1oco 6739 | . . . 4 ⊢ (((𝑦 ∈ 𝐴, 𝑥 ∈ 𝐵 ↦ ((𝐵 ·o 𝑦) +o 𝑥)):(𝐴 × 𝐵)–1-1-onto→(𝐵 ·o 𝐴) ∧ (𝑧 ∈ (𝐵 × 𝐴) ↦ ∪ ◡{𝑧}):(𝐵 × 𝐴)–1-1-onto→(𝐴 × 𝐵)) → ((𝑦 ∈ 𝐴, 𝑥 ∈ 𝐵 ↦ ((𝐵 ·o 𝑦) +o 𝑥)) ∘ (𝑧 ∈ (𝐵 × 𝐴) ↦ ∪ ◡{𝑧})):(𝐵 × 𝐴)–1-1-onto→(𝐵 ·o 𝐴)) | |
7 | 3, 5, 6 | sylancl 586 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝑦 ∈ 𝐴, 𝑥 ∈ 𝐵 ↦ ((𝐵 ·o 𝑦) +o 𝑥)) ∘ (𝑧 ∈ (𝐵 × 𝐴) ↦ ∪ ◡{𝑧})):(𝐵 × 𝐴)–1-1-onto→(𝐵 ·o 𝐴)) |
8 | omf1o.2 | . . . . 5 ⊢ 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐴 ↦ ((𝐵 ·o 𝑦) +o 𝑥)) | |
9 | 4, 1 | xpcomco 8849 | . . . . 5 ⊢ ((𝑦 ∈ 𝐴, 𝑥 ∈ 𝐵 ↦ ((𝐵 ·o 𝑦) +o 𝑥)) ∘ (𝑧 ∈ (𝐵 × 𝐴) ↦ ∪ ◡{𝑧})) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐴 ↦ ((𝐵 ·o 𝑦) +o 𝑥)) |
10 | 8, 9 | eqtr4i 2769 | . . . 4 ⊢ 𝐺 = ((𝑦 ∈ 𝐴, 𝑥 ∈ 𝐵 ↦ ((𝐵 ·o 𝑦) +o 𝑥)) ∘ (𝑧 ∈ (𝐵 × 𝐴) ↦ ∪ ◡{𝑧})) |
11 | f1oeq1 6704 | . . . 4 ⊢ (𝐺 = ((𝑦 ∈ 𝐴, 𝑥 ∈ 𝐵 ↦ ((𝐵 ·o 𝑦) +o 𝑥)) ∘ (𝑧 ∈ (𝐵 × 𝐴) ↦ ∪ ◡{𝑧})) → (𝐺:(𝐵 × 𝐴)–1-1-onto→(𝐵 ·o 𝐴) ↔ ((𝑦 ∈ 𝐴, 𝑥 ∈ 𝐵 ↦ ((𝐵 ·o 𝑦) +o 𝑥)) ∘ (𝑧 ∈ (𝐵 × 𝐴) ↦ ∪ ◡{𝑧})):(𝐵 × 𝐴)–1-1-onto→(𝐵 ·o 𝐴))) | |
12 | 10, 11 | ax-mp 5 | . . 3 ⊢ (𝐺:(𝐵 × 𝐴)–1-1-onto→(𝐵 ·o 𝐴) ↔ ((𝑦 ∈ 𝐴, 𝑥 ∈ 𝐵 ↦ ((𝐵 ·o 𝑦) +o 𝑥)) ∘ (𝑧 ∈ (𝐵 × 𝐴) ↦ ∪ ◡{𝑧})):(𝐵 × 𝐴)–1-1-onto→(𝐵 ·o 𝐴)) |
13 | 7, 12 | sylibr 233 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐺:(𝐵 × 𝐴)–1-1-onto→(𝐵 ·o 𝐴)) |
14 | omf1o.1 | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐴 ↦ ((𝐴 ·o 𝑥) +o 𝑦)) | |
15 | 14 | omxpenlem 8860 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐹:(𝐵 × 𝐴)–1-1-onto→(𝐴 ·o 𝐵)) |
16 | f1ocnv 6728 | . . 3 ⊢ (𝐹:(𝐵 × 𝐴)–1-1-onto→(𝐴 ·o 𝐵) → ◡𝐹:(𝐴 ·o 𝐵)–1-1-onto→(𝐵 × 𝐴)) | |
17 | 15, 16 | syl 17 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ◡𝐹:(𝐴 ·o 𝐵)–1-1-onto→(𝐵 × 𝐴)) |
18 | f1oco 6739 | . 2 ⊢ ((𝐺:(𝐵 × 𝐴)–1-1-onto→(𝐵 ·o 𝐴) ∧ ◡𝐹:(𝐴 ·o 𝐵)–1-1-onto→(𝐵 × 𝐴)) → (𝐺 ∘ ◡𝐹):(𝐴 ·o 𝐵)–1-1-onto→(𝐵 ·o 𝐴)) | |
19 | 13, 17, 18 | syl2anc 584 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐺 ∘ ◡𝐹):(𝐴 ·o 𝐵)–1-1-onto→(𝐵 ·o 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 {csn 4561 ∪ cuni 4839 ↦ cmpt 5157 × cxp 5587 ◡ccnv 5588 ∘ ccom 5593 Oncon0 6266 –1-1-onto→wf1o 6432 (class class class)co 7275 ∈ cmpo 7277 +o coa 8294 ·o comu 8295 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-oadd 8301 df-omul 8302 |
This theorem is referenced by: cnfcom3 9462 infxpenc 9774 |
Copyright terms: Public domain | W3C validator |