| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > omf1o | Structured version Visualization version GIF version | ||
| Description: Construct an explicit bijection from 𝐴 ·o 𝐵 to 𝐵 ·o 𝐴. (Contributed by Mario Carneiro, 30-May-2015.) |
| Ref | Expression |
|---|---|
| omf1o.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐴 ↦ ((𝐴 ·o 𝑥) +o 𝑦)) |
| omf1o.2 | ⊢ 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐴 ↦ ((𝐵 ·o 𝑦) +o 𝑥)) |
| Ref | Expression |
|---|---|
| omf1o | ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐺 ∘ ◡𝐹):(𝐴 ·o 𝐵)–1-1-onto→(𝐵 ·o 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2736 | . . . . . 6 ⊢ (𝑦 ∈ 𝐴, 𝑥 ∈ 𝐵 ↦ ((𝐵 ·o 𝑦) +o 𝑥)) = (𝑦 ∈ 𝐴, 𝑥 ∈ 𝐵 ↦ ((𝐵 ·o 𝑦) +o 𝑥)) | |
| 2 | 1 | omxpenlem 9092 | . . . . 5 ⊢ ((𝐵 ∈ On ∧ 𝐴 ∈ On) → (𝑦 ∈ 𝐴, 𝑥 ∈ 𝐵 ↦ ((𝐵 ·o 𝑦) +o 𝑥)):(𝐴 × 𝐵)–1-1-onto→(𝐵 ·o 𝐴)) |
| 3 | 2 | ancoms 458 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝑦 ∈ 𝐴, 𝑥 ∈ 𝐵 ↦ ((𝐵 ·o 𝑦) +o 𝑥)):(𝐴 × 𝐵)–1-1-onto→(𝐵 ·o 𝐴)) |
| 4 | eqid 2736 | . . . . 5 ⊢ (𝑧 ∈ (𝐵 × 𝐴) ↦ ∪ ◡{𝑧}) = (𝑧 ∈ (𝐵 × 𝐴) ↦ ∪ ◡{𝑧}) | |
| 5 | 4 | xpcomf1o 9080 | . . . 4 ⊢ (𝑧 ∈ (𝐵 × 𝐴) ↦ ∪ ◡{𝑧}):(𝐵 × 𝐴)–1-1-onto→(𝐴 × 𝐵) |
| 6 | f1oco 6846 | . . . 4 ⊢ (((𝑦 ∈ 𝐴, 𝑥 ∈ 𝐵 ↦ ((𝐵 ·o 𝑦) +o 𝑥)):(𝐴 × 𝐵)–1-1-onto→(𝐵 ·o 𝐴) ∧ (𝑧 ∈ (𝐵 × 𝐴) ↦ ∪ ◡{𝑧}):(𝐵 × 𝐴)–1-1-onto→(𝐴 × 𝐵)) → ((𝑦 ∈ 𝐴, 𝑥 ∈ 𝐵 ↦ ((𝐵 ·o 𝑦) +o 𝑥)) ∘ (𝑧 ∈ (𝐵 × 𝐴) ↦ ∪ ◡{𝑧})):(𝐵 × 𝐴)–1-1-onto→(𝐵 ·o 𝐴)) | |
| 7 | 3, 5, 6 | sylancl 586 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝑦 ∈ 𝐴, 𝑥 ∈ 𝐵 ↦ ((𝐵 ·o 𝑦) +o 𝑥)) ∘ (𝑧 ∈ (𝐵 × 𝐴) ↦ ∪ ◡{𝑧})):(𝐵 × 𝐴)–1-1-onto→(𝐵 ·o 𝐴)) |
| 8 | omf1o.2 | . . . . 5 ⊢ 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐴 ↦ ((𝐵 ·o 𝑦) +o 𝑥)) | |
| 9 | 4, 1 | xpcomco 9081 | . . . . 5 ⊢ ((𝑦 ∈ 𝐴, 𝑥 ∈ 𝐵 ↦ ((𝐵 ·o 𝑦) +o 𝑥)) ∘ (𝑧 ∈ (𝐵 × 𝐴) ↦ ∪ ◡{𝑧})) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐴 ↦ ((𝐵 ·o 𝑦) +o 𝑥)) |
| 10 | 8, 9 | eqtr4i 2762 | . . . 4 ⊢ 𝐺 = ((𝑦 ∈ 𝐴, 𝑥 ∈ 𝐵 ↦ ((𝐵 ·o 𝑦) +o 𝑥)) ∘ (𝑧 ∈ (𝐵 × 𝐴) ↦ ∪ ◡{𝑧})) |
| 11 | f1oeq1 6811 | . . . 4 ⊢ (𝐺 = ((𝑦 ∈ 𝐴, 𝑥 ∈ 𝐵 ↦ ((𝐵 ·o 𝑦) +o 𝑥)) ∘ (𝑧 ∈ (𝐵 × 𝐴) ↦ ∪ ◡{𝑧})) → (𝐺:(𝐵 × 𝐴)–1-1-onto→(𝐵 ·o 𝐴) ↔ ((𝑦 ∈ 𝐴, 𝑥 ∈ 𝐵 ↦ ((𝐵 ·o 𝑦) +o 𝑥)) ∘ (𝑧 ∈ (𝐵 × 𝐴) ↦ ∪ ◡{𝑧})):(𝐵 × 𝐴)–1-1-onto→(𝐵 ·o 𝐴))) | |
| 12 | 10, 11 | ax-mp 5 | . . 3 ⊢ (𝐺:(𝐵 × 𝐴)–1-1-onto→(𝐵 ·o 𝐴) ↔ ((𝑦 ∈ 𝐴, 𝑥 ∈ 𝐵 ↦ ((𝐵 ·o 𝑦) +o 𝑥)) ∘ (𝑧 ∈ (𝐵 × 𝐴) ↦ ∪ ◡{𝑧})):(𝐵 × 𝐴)–1-1-onto→(𝐵 ·o 𝐴)) |
| 13 | 7, 12 | sylibr 234 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐺:(𝐵 × 𝐴)–1-1-onto→(𝐵 ·o 𝐴)) |
| 14 | omf1o.1 | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐴 ↦ ((𝐴 ·o 𝑥) +o 𝑦)) | |
| 15 | 14 | omxpenlem 9092 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐹:(𝐵 × 𝐴)–1-1-onto→(𝐴 ·o 𝐵)) |
| 16 | f1ocnv 6835 | . . 3 ⊢ (𝐹:(𝐵 × 𝐴)–1-1-onto→(𝐴 ·o 𝐵) → ◡𝐹:(𝐴 ·o 𝐵)–1-1-onto→(𝐵 × 𝐴)) | |
| 17 | 15, 16 | syl 17 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ◡𝐹:(𝐴 ·o 𝐵)–1-1-onto→(𝐵 × 𝐴)) |
| 18 | f1oco 6846 | . 2 ⊢ ((𝐺:(𝐵 × 𝐴)–1-1-onto→(𝐵 ·o 𝐴) ∧ ◡𝐹:(𝐴 ·o 𝐵)–1-1-onto→(𝐵 × 𝐴)) → (𝐺 ∘ ◡𝐹):(𝐴 ·o 𝐵)–1-1-onto→(𝐵 ·o 𝐴)) | |
| 19 | 13, 17, 18 | syl2anc 584 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐺 ∘ ◡𝐹):(𝐴 ·o 𝐵)–1-1-onto→(𝐵 ·o 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {csn 4606 ∪ cuni 4888 ↦ cmpt 5206 × cxp 5657 ◡ccnv 5658 ∘ ccom 5663 Oncon0 6357 –1-1-onto→wf1o 6535 (class class class)co 7410 ∈ cmpo 7412 +o coa 8482 ·o comu 8483 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-oadd 8489 df-omul 8490 |
| This theorem is referenced by: cnfcom3 9723 infxpenc 10037 |
| Copyright terms: Public domain | W3C validator |