MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  omf1o Structured version   Visualization version   GIF version

Theorem omf1o 8862
Description: Construct an explicit bijection from 𝐴 ·o 𝐵 to 𝐵 ·o 𝐴. (Contributed by Mario Carneiro, 30-May-2015.)
Hypotheses
Ref Expression
omf1o.1 𝐹 = (𝑥𝐵, 𝑦𝐴 ↦ ((𝐴 ·o 𝑥) +o 𝑦))
omf1o.2 𝐺 = (𝑥𝐵, 𝑦𝐴 ↦ ((𝐵 ·o 𝑦) +o 𝑥))
Assertion
Ref Expression
omf1o ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐺𝐹):(𝐴 ·o 𝐵)–1-1-onto→(𝐵 ·o 𝐴))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦)   𝐺(𝑥,𝑦)

Proof of Theorem omf1o
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 eqid 2738 . . . . . 6 (𝑦𝐴, 𝑥𝐵 ↦ ((𝐵 ·o 𝑦) +o 𝑥)) = (𝑦𝐴, 𝑥𝐵 ↦ ((𝐵 ·o 𝑦) +o 𝑥))
21omxpenlem 8860 . . . . 5 ((𝐵 ∈ On ∧ 𝐴 ∈ On) → (𝑦𝐴, 𝑥𝐵 ↦ ((𝐵 ·o 𝑦) +o 𝑥)):(𝐴 × 𝐵)–1-1-onto→(𝐵 ·o 𝐴))
32ancoms 459 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝑦𝐴, 𝑥𝐵 ↦ ((𝐵 ·o 𝑦) +o 𝑥)):(𝐴 × 𝐵)–1-1-onto→(𝐵 ·o 𝐴))
4 eqid 2738 . . . . 5 (𝑧 ∈ (𝐵 × 𝐴) ↦ {𝑧}) = (𝑧 ∈ (𝐵 × 𝐴) ↦ {𝑧})
54xpcomf1o 8848 . . . 4 (𝑧 ∈ (𝐵 × 𝐴) ↦ {𝑧}):(𝐵 × 𝐴)–1-1-onto→(𝐴 × 𝐵)
6 f1oco 6739 . . . 4 (((𝑦𝐴, 𝑥𝐵 ↦ ((𝐵 ·o 𝑦) +o 𝑥)):(𝐴 × 𝐵)–1-1-onto→(𝐵 ·o 𝐴) ∧ (𝑧 ∈ (𝐵 × 𝐴) ↦ {𝑧}):(𝐵 × 𝐴)–1-1-onto→(𝐴 × 𝐵)) → ((𝑦𝐴, 𝑥𝐵 ↦ ((𝐵 ·o 𝑦) +o 𝑥)) ∘ (𝑧 ∈ (𝐵 × 𝐴) ↦ {𝑧})):(𝐵 × 𝐴)–1-1-onto→(𝐵 ·o 𝐴))
73, 5, 6sylancl 586 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝑦𝐴, 𝑥𝐵 ↦ ((𝐵 ·o 𝑦) +o 𝑥)) ∘ (𝑧 ∈ (𝐵 × 𝐴) ↦ {𝑧})):(𝐵 × 𝐴)–1-1-onto→(𝐵 ·o 𝐴))
8 omf1o.2 . . . . 5 𝐺 = (𝑥𝐵, 𝑦𝐴 ↦ ((𝐵 ·o 𝑦) +o 𝑥))
94, 1xpcomco 8849 . . . . 5 ((𝑦𝐴, 𝑥𝐵 ↦ ((𝐵 ·o 𝑦) +o 𝑥)) ∘ (𝑧 ∈ (𝐵 × 𝐴) ↦ {𝑧})) = (𝑥𝐵, 𝑦𝐴 ↦ ((𝐵 ·o 𝑦) +o 𝑥))
108, 9eqtr4i 2769 . . . 4 𝐺 = ((𝑦𝐴, 𝑥𝐵 ↦ ((𝐵 ·o 𝑦) +o 𝑥)) ∘ (𝑧 ∈ (𝐵 × 𝐴) ↦ {𝑧}))
11 f1oeq1 6704 . . . 4 (𝐺 = ((𝑦𝐴, 𝑥𝐵 ↦ ((𝐵 ·o 𝑦) +o 𝑥)) ∘ (𝑧 ∈ (𝐵 × 𝐴) ↦ {𝑧})) → (𝐺:(𝐵 × 𝐴)–1-1-onto→(𝐵 ·o 𝐴) ↔ ((𝑦𝐴, 𝑥𝐵 ↦ ((𝐵 ·o 𝑦) +o 𝑥)) ∘ (𝑧 ∈ (𝐵 × 𝐴) ↦ {𝑧})):(𝐵 × 𝐴)–1-1-onto→(𝐵 ·o 𝐴)))
1210, 11ax-mp 5 . . 3 (𝐺:(𝐵 × 𝐴)–1-1-onto→(𝐵 ·o 𝐴) ↔ ((𝑦𝐴, 𝑥𝐵 ↦ ((𝐵 ·o 𝑦) +o 𝑥)) ∘ (𝑧 ∈ (𝐵 × 𝐴) ↦ {𝑧})):(𝐵 × 𝐴)–1-1-onto→(𝐵 ·o 𝐴))
137, 12sylibr 233 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐺:(𝐵 × 𝐴)–1-1-onto→(𝐵 ·o 𝐴))
14 omf1o.1 . . . 4 𝐹 = (𝑥𝐵, 𝑦𝐴 ↦ ((𝐴 ·o 𝑥) +o 𝑦))
1514omxpenlem 8860 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐹:(𝐵 × 𝐴)–1-1-onto→(𝐴 ·o 𝐵))
16 f1ocnv 6728 . . 3 (𝐹:(𝐵 × 𝐴)–1-1-onto→(𝐴 ·o 𝐵) → 𝐹:(𝐴 ·o 𝐵)–1-1-onto→(𝐵 × 𝐴))
1715, 16syl 17 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐹:(𝐴 ·o 𝐵)–1-1-onto→(𝐵 × 𝐴))
18 f1oco 6739 . 2 ((𝐺:(𝐵 × 𝐴)–1-1-onto→(𝐵 ·o 𝐴) ∧ 𝐹:(𝐴 ·o 𝐵)–1-1-onto→(𝐵 × 𝐴)) → (𝐺𝐹):(𝐴 ·o 𝐵)–1-1-onto→(𝐵 ·o 𝐴))
1913, 17, 18syl2anc 584 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐺𝐹):(𝐴 ·o 𝐵)–1-1-onto→(𝐵 ·o 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  {csn 4561   cuni 4839  cmpt 5157   × cxp 5587  ccnv 5588  ccom 5593  Oncon0 6266  1-1-ontowf1o 6432  (class class class)co 7275  cmpo 7277   +o coa 8294   ·o comu 8295
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-oadd 8301  df-omul 8302
This theorem is referenced by:  cnfcom3  9462  infxpenc  9774
  Copyright terms: Public domain W3C validator