MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  omf1o Structured version   Visualization version   GIF version

Theorem omf1o 9094
Description: Construct an explicit bijection from 𝐴 ·o 𝐵 to 𝐵 ·o 𝐴. (Contributed by Mario Carneiro, 30-May-2015.)
Hypotheses
Ref Expression
omf1o.1 𝐹 = (𝑥𝐵, 𝑦𝐴 ↦ ((𝐴 ·o 𝑥) +o 𝑦))
omf1o.2 𝐺 = (𝑥𝐵, 𝑦𝐴 ↦ ((𝐵 ·o 𝑦) +o 𝑥))
Assertion
Ref Expression
omf1o ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐺𝐹):(𝐴 ·o 𝐵)–1-1-onto→(𝐵 ·o 𝐴))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦)   𝐺(𝑥,𝑦)

Proof of Theorem omf1o
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 eqid 2736 . . . . . 6 (𝑦𝐴, 𝑥𝐵 ↦ ((𝐵 ·o 𝑦) +o 𝑥)) = (𝑦𝐴, 𝑥𝐵 ↦ ((𝐵 ·o 𝑦) +o 𝑥))
21omxpenlem 9092 . . . . 5 ((𝐵 ∈ On ∧ 𝐴 ∈ On) → (𝑦𝐴, 𝑥𝐵 ↦ ((𝐵 ·o 𝑦) +o 𝑥)):(𝐴 × 𝐵)–1-1-onto→(𝐵 ·o 𝐴))
32ancoms 458 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝑦𝐴, 𝑥𝐵 ↦ ((𝐵 ·o 𝑦) +o 𝑥)):(𝐴 × 𝐵)–1-1-onto→(𝐵 ·o 𝐴))
4 eqid 2736 . . . . 5 (𝑧 ∈ (𝐵 × 𝐴) ↦ {𝑧}) = (𝑧 ∈ (𝐵 × 𝐴) ↦ {𝑧})
54xpcomf1o 9080 . . . 4 (𝑧 ∈ (𝐵 × 𝐴) ↦ {𝑧}):(𝐵 × 𝐴)–1-1-onto→(𝐴 × 𝐵)
6 f1oco 6846 . . . 4 (((𝑦𝐴, 𝑥𝐵 ↦ ((𝐵 ·o 𝑦) +o 𝑥)):(𝐴 × 𝐵)–1-1-onto→(𝐵 ·o 𝐴) ∧ (𝑧 ∈ (𝐵 × 𝐴) ↦ {𝑧}):(𝐵 × 𝐴)–1-1-onto→(𝐴 × 𝐵)) → ((𝑦𝐴, 𝑥𝐵 ↦ ((𝐵 ·o 𝑦) +o 𝑥)) ∘ (𝑧 ∈ (𝐵 × 𝐴) ↦ {𝑧})):(𝐵 × 𝐴)–1-1-onto→(𝐵 ·o 𝐴))
73, 5, 6sylancl 586 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝑦𝐴, 𝑥𝐵 ↦ ((𝐵 ·o 𝑦) +o 𝑥)) ∘ (𝑧 ∈ (𝐵 × 𝐴) ↦ {𝑧})):(𝐵 × 𝐴)–1-1-onto→(𝐵 ·o 𝐴))
8 omf1o.2 . . . . 5 𝐺 = (𝑥𝐵, 𝑦𝐴 ↦ ((𝐵 ·o 𝑦) +o 𝑥))
94, 1xpcomco 9081 . . . . 5 ((𝑦𝐴, 𝑥𝐵 ↦ ((𝐵 ·o 𝑦) +o 𝑥)) ∘ (𝑧 ∈ (𝐵 × 𝐴) ↦ {𝑧})) = (𝑥𝐵, 𝑦𝐴 ↦ ((𝐵 ·o 𝑦) +o 𝑥))
108, 9eqtr4i 2762 . . . 4 𝐺 = ((𝑦𝐴, 𝑥𝐵 ↦ ((𝐵 ·o 𝑦) +o 𝑥)) ∘ (𝑧 ∈ (𝐵 × 𝐴) ↦ {𝑧}))
11 f1oeq1 6811 . . . 4 (𝐺 = ((𝑦𝐴, 𝑥𝐵 ↦ ((𝐵 ·o 𝑦) +o 𝑥)) ∘ (𝑧 ∈ (𝐵 × 𝐴) ↦ {𝑧})) → (𝐺:(𝐵 × 𝐴)–1-1-onto→(𝐵 ·o 𝐴) ↔ ((𝑦𝐴, 𝑥𝐵 ↦ ((𝐵 ·o 𝑦) +o 𝑥)) ∘ (𝑧 ∈ (𝐵 × 𝐴) ↦ {𝑧})):(𝐵 × 𝐴)–1-1-onto→(𝐵 ·o 𝐴)))
1210, 11ax-mp 5 . . 3 (𝐺:(𝐵 × 𝐴)–1-1-onto→(𝐵 ·o 𝐴) ↔ ((𝑦𝐴, 𝑥𝐵 ↦ ((𝐵 ·o 𝑦) +o 𝑥)) ∘ (𝑧 ∈ (𝐵 × 𝐴) ↦ {𝑧})):(𝐵 × 𝐴)–1-1-onto→(𝐵 ·o 𝐴))
137, 12sylibr 234 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐺:(𝐵 × 𝐴)–1-1-onto→(𝐵 ·o 𝐴))
14 omf1o.1 . . . 4 𝐹 = (𝑥𝐵, 𝑦𝐴 ↦ ((𝐴 ·o 𝑥) +o 𝑦))
1514omxpenlem 9092 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐹:(𝐵 × 𝐴)–1-1-onto→(𝐴 ·o 𝐵))
16 f1ocnv 6835 . . 3 (𝐹:(𝐵 × 𝐴)–1-1-onto→(𝐴 ·o 𝐵) → 𝐹:(𝐴 ·o 𝐵)–1-1-onto→(𝐵 × 𝐴))
1715, 16syl 17 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐹:(𝐴 ·o 𝐵)–1-1-onto→(𝐵 × 𝐴))
18 f1oco 6846 . 2 ((𝐺:(𝐵 × 𝐴)–1-1-onto→(𝐵 ·o 𝐴) ∧ 𝐹:(𝐴 ·o 𝐵)–1-1-onto→(𝐵 × 𝐴)) → (𝐺𝐹):(𝐴 ·o 𝐵)–1-1-onto→(𝐵 ·o 𝐴))
1913, 17, 18syl2anc 584 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐺𝐹):(𝐴 ·o 𝐵)–1-1-onto→(𝐵 ·o 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  {csn 4606   cuni 4888  cmpt 5206   × cxp 5657  ccnv 5658  ccom 5663  Oncon0 6357  1-1-ontowf1o 6535  (class class class)co 7410  cmpo 7412   +o coa 8482   ·o comu 8483
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-oadd 8489  df-omul 8490
This theorem is referenced by:  cnfcom3  9723  infxpenc  10037
  Copyright terms: Public domain W3C validator