![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > omf1o | Structured version Visualization version GIF version |
Description: Construct an explicit bijection from 𝐴 ·o 𝐵 to 𝐵 ·o 𝐴. (Contributed by Mario Carneiro, 30-May-2015.) |
Ref | Expression |
---|---|
omf1o.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐴 ↦ ((𝐴 ·o 𝑥) +o 𝑦)) |
omf1o.2 | ⊢ 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐴 ↦ ((𝐵 ·o 𝑦) +o 𝑥)) |
Ref | Expression |
---|---|
omf1o | ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐺 ∘ ◡𝐹):(𝐴 ·o 𝐵)–1-1-onto→(𝐵 ·o 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2740 | . . . . . 6 ⊢ (𝑦 ∈ 𝐴, 𝑥 ∈ 𝐵 ↦ ((𝐵 ·o 𝑦) +o 𝑥)) = (𝑦 ∈ 𝐴, 𝑥 ∈ 𝐵 ↦ ((𝐵 ·o 𝑦) +o 𝑥)) | |
2 | 1 | omxpenlem 9139 | . . . . 5 ⊢ ((𝐵 ∈ On ∧ 𝐴 ∈ On) → (𝑦 ∈ 𝐴, 𝑥 ∈ 𝐵 ↦ ((𝐵 ·o 𝑦) +o 𝑥)):(𝐴 × 𝐵)–1-1-onto→(𝐵 ·o 𝐴)) |
3 | 2 | ancoms 458 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝑦 ∈ 𝐴, 𝑥 ∈ 𝐵 ↦ ((𝐵 ·o 𝑦) +o 𝑥)):(𝐴 × 𝐵)–1-1-onto→(𝐵 ·o 𝐴)) |
4 | eqid 2740 | . . . . 5 ⊢ (𝑧 ∈ (𝐵 × 𝐴) ↦ ∪ ◡{𝑧}) = (𝑧 ∈ (𝐵 × 𝐴) ↦ ∪ ◡{𝑧}) | |
5 | 4 | xpcomf1o 9127 | . . . 4 ⊢ (𝑧 ∈ (𝐵 × 𝐴) ↦ ∪ ◡{𝑧}):(𝐵 × 𝐴)–1-1-onto→(𝐴 × 𝐵) |
6 | f1oco 6885 | . . . 4 ⊢ (((𝑦 ∈ 𝐴, 𝑥 ∈ 𝐵 ↦ ((𝐵 ·o 𝑦) +o 𝑥)):(𝐴 × 𝐵)–1-1-onto→(𝐵 ·o 𝐴) ∧ (𝑧 ∈ (𝐵 × 𝐴) ↦ ∪ ◡{𝑧}):(𝐵 × 𝐴)–1-1-onto→(𝐴 × 𝐵)) → ((𝑦 ∈ 𝐴, 𝑥 ∈ 𝐵 ↦ ((𝐵 ·o 𝑦) +o 𝑥)) ∘ (𝑧 ∈ (𝐵 × 𝐴) ↦ ∪ ◡{𝑧})):(𝐵 × 𝐴)–1-1-onto→(𝐵 ·o 𝐴)) | |
7 | 3, 5, 6 | sylancl 585 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝑦 ∈ 𝐴, 𝑥 ∈ 𝐵 ↦ ((𝐵 ·o 𝑦) +o 𝑥)) ∘ (𝑧 ∈ (𝐵 × 𝐴) ↦ ∪ ◡{𝑧})):(𝐵 × 𝐴)–1-1-onto→(𝐵 ·o 𝐴)) |
8 | omf1o.2 | . . . . 5 ⊢ 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐴 ↦ ((𝐵 ·o 𝑦) +o 𝑥)) | |
9 | 4, 1 | xpcomco 9128 | . . . . 5 ⊢ ((𝑦 ∈ 𝐴, 𝑥 ∈ 𝐵 ↦ ((𝐵 ·o 𝑦) +o 𝑥)) ∘ (𝑧 ∈ (𝐵 × 𝐴) ↦ ∪ ◡{𝑧})) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐴 ↦ ((𝐵 ·o 𝑦) +o 𝑥)) |
10 | 8, 9 | eqtr4i 2771 | . . . 4 ⊢ 𝐺 = ((𝑦 ∈ 𝐴, 𝑥 ∈ 𝐵 ↦ ((𝐵 ·o 𝑦) +o 𝑥)) ∘ (𝑧 ∈ (𝐵 × 𝐴) ↦ ∪ ◡{𝑧})) |
11 | f1oeq1 6850 | . . . 4 ⊢ (𝐺 = ((𝑦 ∈ 𝐴, 𝑥 ∈ 𝐵 ↦ ((𝐵 ·o 𝑦) +o 𝑥)) ∘ (𝑧 ∈ (𝐵 × 𝐴) ↦ ∪ ◡{𝑧})) → (𝐺:(𝐵 × 𝐴)–1-1-onto→(𝐵 ·o 𝐴) ↔ ((𝑦 ∈ 𝐴, 𝑥 ∈ 𝐵 ↦ ((𝐵 ·o 𝑦) +o 𝑥)) ∘ (𝑧 ∈ (𝐵 × 𝐴) ↦ ∪ ◡{𝑧})):(𝐵 × 𝐴)–1-1-onto→(𝐵 ·o 𝐴))) | |
12 | 10, 11 | ax-mp 5 | . . 3 ⊢ (𝐺:(𝐵 × 𝐴)–1-1-onto→(𝐵 ·o 𝐴) ↔ ((𝑦 ∈ 𝐴, 𝑥 ∈ 𝐵 ↦ ((𝐵 ·o 𝑦) +o 𝑥)) ∘ (𝑧 ∈ (𝐵 × 𝐴) ↦ ∪ ◡{𝑧})):(𝐵 × 𝐴)–1-1-onto→(𝐵 ·o 𝐴)) |
13 | 7, 12 | sylibr 234 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐺:(𝐵 × 𝐴)–1-1-onto→(𝐵 ·o 𝐴)) |
14 | omf1o.1 | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐴 ↦ ((𝐴 ·o 𝑥) +o 𝑦)) | |
15 | 14 | omxpenlem 9139 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐹:(𝐵 × 𝐴)–1-1-onto→(𝐴 ·o 𝐵)) |
16 | f1ocnv 6874 | . . 3 ⊢ (𝐹:(𝐵 × 𝐴)–1-1-onto→(𝐴 ·o 𝐵) → ◡𝐹:(𝐴 ·o 𝐵)–1-1-onto→(𝐵 × 𝐴)) | |
17 | 15, 16 | syl 17 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ◡𝐹:(𝐴 ·o 𝐵)–1-1-onto→(𝐵 × 𝐴)) |
18 | f1oco 6885 | . 2 ⊢ ((𝐺:(𝐵 × 𝐴)–1-1-onto→(𝐵 ·o 𝐴) ∧ ◡𝐹:(𝐴 ·o 𝐵)–1-1-onto→(𝐵 × 𝐴)) → (𝐺 ∘ ◡𝐹):(𝐴 ·o 𝐵)–1-1-onto→(𝐵 ·o 𝐴)) | |
19 | 13, 17, 18 | syl2anc 583 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐺 ∘ ◡𝐹):(𝐴 ·o 𝐵)–1-1-onto→(𝐵 ·o 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 {csn 4648 ∪ cuni 4931 ↦ cmpt 5249 × cxp 5698 ◡ccnv 5699 ∘ ccom 5704 Oncon0 6395 –1-1-onto→wf1o 6572 (class class class)co 7448 ∈ cmpo 7450 +o coa 8519 ·o comu 8520 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-oadd 8526 df-omul 8527 |
This theorem is referenced by: cnfcom3 9773 infxpenc 10087 |
Copyright terms: Public domain | W3C validator |