MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpord3indd Structured version   Visualization version   GIF version

Theorem xpord3indd 8135
Description: Induction over the triple Cartesian product ordering. Note that the substitutions cover all possible cases of membership in the predecessor class. (Contributed by Scott Fenton, 2-Feb-2025.)
Hypotheses
Ref Expression
xpord3indd.x (𝜅𝑋𝐴)
xpord3indd.y (𝜅𝑌𝐵)
xpord3indd.z (𝜅𝑍𝐶)
xpord3indd.1 (𝜅𝑅 Fr 𝐴)
xpord3indd.2 (𝜅𝑅 Po 𝐴)
xpord3indd.3 (𝜅𝑅 Se 𝐴)
xpord3indd.4 (𝜅𝑆 Fr 𝐵)
xpord3indd.5 (𝜅𝑆 Po 𝐵)
xpord3indd.6 (𝜅𝑆 Se 𝐵)
xpord3indd.7 (𝜅𝑇 Fr 𝐶)
xpord3indd.8 (𝜅𝑇 Po 𝐶)
xpord3indd.9 (𝜅𝑇 Se 𝐶)
xpord3indd.10 (𝑎 = 𝑑 → (𝜑𝜓))
xpord3indd.11 (𝑏 = 𝑒 → (𝜓𝜒))
xpord3indd.12 (𝑐 = 𝑓 → (𝜒𝜃))
xpord3indd.13 (𝑎 = 𝑑 → (𝜏𝜃))
xpord3indd.14 (𝑏 = 𝑒 → (𝜂𝜏))
xpord3indd.15 (𝑏 = 𝑒 → (𝜁𝜃))
xpord3indd.16 (𝑐 = 𝑓 → (𝜎𝜏))
xpord3indd.17 (𝑎 = 𝑋 → (𝜑𝜌))
xpord3indd.18 (𝑏 = 𝑌 → (𝜌𝜇))
xpord3indd.19 (𝑐 = 𝑍 → (𝜇𝜆))
xpord3indd.i ((𝜅 ∧ (𝑎𝐴𝑏𝐵𝑐𝐶)) → (((∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)𝜃 ∧ ∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)𝜒 ∧ ∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)𝜁) ∧ (∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)𝜓 ∧ ∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)𝜏 ∧ ∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)𝜎) ∧ ∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)𝜂) → 𝜑))
Assertion
Ref Expression
xpord3indd (𝜅𝜆)
Distinct variable groups:   𝐴,𝑎,𝑏,𝑐,𝑑,𝑒,𝑓   𝐵,𝑎,𝑏,𝑐,𝑑,𝑒,𝑓   𝐶,𝑎,𝑏,𝑐,𝑑,𝑒,𝑓   𝑅,𝑎,𝑏,𝑐,𝑑,𝑒,𝑓   𝑆,𝑎,𝑏,𝑐,𝑑,𝑒,𝑓   𝑇,𝑎,𝑏,𝑐,𝑑,𝑒,𝑓   𝑋,𝑎,𝑏,𝑐   𝑌,𝑏,𝑐   𝑍,𝑐   𝜅,𝑎,𝑏,𝑐,𝑑,𝑒,𝑓   𝜓,𝑎   𝜌,𝑎   𝜃,𝑎   𝜒,𝑏,𝑓   𝜇,𝑏   𝜃,𝑏   𝜆,𝑐   𝜃,𝑐   𝜑,𝑑   𝜏,𝑑   𝜂,𝑒   𝜓,𝑒   𝜁,𝑒   𝜎,𝑓
Allowed substitution hints:   𝜑(𝑒,𝑓,𝑎,𝑏,𝑐)   𝜓(𝑓,𝑏,𝑐,𝑑)   𝜒(𝑒,𝑎,𝑐,𝑑)   𝜃(𝑒,𝑓,𝑑)   𝜏(𝑒,𝑓,𝑎,𝑏,𝑐)   𝜂(𝑓,𝑎,𝑏,𝑐,𝑑)   𝜁(𝑓,𝑎,𝑏,𝑐,𝑑)   𝜎(𝑒,𝑎,𝑏,𝑐,𝑑)   𝜌(𝑒,𝑓,𝑏,𝑐,𝑑)   𝜇(𝑒,𝑓,𝑎,𝑐,𝑑)   𝜆(𝑒,𝑓,𝑎,𝑏,𝑑)   𝑋(𝑒,𝑓,𝑑)   𝑌(𝑒,𝑓,𝑎,𝑑)   𝑍(𝑒,𝑓,𝑎,𝑏,𝑑)

Proof of Theorem xpord3indd
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2724 . 2 {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((𝐴 × 𝐵) × 𝐶) ∧ 𝑦 ∈ ((𝐴 × 𝐵) × 𝐶) ∧ ((((1st ‘(1st𝑥))𝑅(1st ‘(1st𝑦)) ∨ (1st ‘(1st𝑥)) = (1st ‘(1st𝑦))) ∧ ((2nd ‘(1st𝑥))𝑆(2nd ‘(1st𝑦)) ∨ (2nd ‘(1st𝑥)) = (2nd ‘(1st𝑦))) ∧ ((2nd𝑥)𝑇(2nd𝑦) ∨ (2nd𝑥) = (2nd𝑦))) ∧ 𝑥𝑦))} = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((𝐴 × 𝐵) × 𝐶) ∧ 𝑦 ∈ ((𝐴 × 𝐵) × 𝐶) ∧ ((((1st ‘(1st𝑥))𝑅(1st ‘(1st𝑦)) ∨ (1st ‘(1st𝑥)) = (1st ‘(1st𝑦))) ∧ ((2nd ‘(1st𝑥))𝑆(2nd ‘(1st𝑦)) ∨ (2nd ‘(1st𝑥)) = (2nd ‘(1st𝑦))) ∧ ((2nd𝑥)𝑇(2nd𝑦) ∨ (2nd𝑥) = (2nd𝑦))) ∧ 𝑥𝑦))}
2 xpord3indd.x . 2 (𝜅𝑋𝐴)
3 xpord3indd.y . 2 (𝜅𝑌𝐵)
4 xpord3indd.z . 2 (𝜅𝑍𝐶)
5 xpord3indd.1 . 2 (𝜅𝑅 Fr 𝐴)
6 xpord3indd.2 . 2 (𝜅𝑅 Po 𝐴)
7 xpord3indd.3 . 2 (𝜅𝑅 Se 𝐴)
8 xpord3indd.4 . 2 (𝜅𝑆 Fr 𝐵)
9 xpord3indd.5 . 2 (𝜅𝑆 Po 𝐵)
10 xpord3indd.6 . 2 (𝜅𝑆 Se 𝐵)
11 xpord3indd.7 . 2 (𝜅𝑇 Fr 𝐶)
12 xpord3indd.8 . 2 (𝜅𝑇 Po 𝐶)
13 xpord3indd.9 . 2 (𝜅𝑇 Se 𝐶)
14 xpord3indd.10 . 2 (𝑎 = 𝑑 → (𝜑𝜓))
15 xpord3indd.11 . 2 (𝑏 = 𝑒 → (𝜓𝜒))
16 xpord3indd.12 . 2 (𝑐 = 𝑓 → (𝜒𝜃))
17 xpord3indd.13 . 2 (𝑎 = 𝑑 → (𝜏𝜃))
18 xpord3indd.14 . 2 (𝑏 = 𝑒 → (𝜂𝜏))
19 xpord3indd.15 . 2 (𝑏 = 𝑒 → (𝜁𝜃))
20 xpord3indd.16 . 2 (𝑐 = 𝑓 → (𝜎𝜏))
21 xpord3indd.17 . 2 (𝑎 = 𝑋 → (𝜑𝜌))
22 xpord3indd.18 . 2 (𝑏 = 𝑌 → (𝜌𝜇))
23 xpord3indd.19 . 2 (𝑐 = 𝑍 → (𝜇𝜆))
24 xpord3indd.i . 2 ((𝜅 ∧ (𝑎𝐴𝑏𝐵𝑐𝐶)) → (((∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)𝜃 ∧ ∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)𝜒 ∧ ∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)𝜁) ∧ (∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)𝜓 ∧ ∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)𝜏 ∧ ∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)𝜎) ∧ ∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)𝜂) → 𝜑))
251, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24xpord3inddlem 8134 1 (𝜅𝜆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wo 844  w3a 1084   = wceq 1533  wcel 2098  wne 2932  wral 3053   class class class wbr 5138  {copab 5200   Po wpo 5576   Fr wfr 5618   Se wse 5619   × cxp 5664  Predcpred 6289  cfv 6533  1st c1st 7966  2nd c2nd 7967
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-ot 4629  df-uni 4900  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-id 5564  df-po 5578  df-fr 5621  df-se 5622  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-pred 6290  df-iota 6485  df-fun 6535  df-fv 6541  df-1st 7968  df-2nd 7969
This theorem is referenced by:  xpord3ind  8136
  Copyright terms: Public domain W3C validator