MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpord3indd Structured version   Visualization version   GIF version

Theorem xpord3indd 8079
Description: Induction over the triple Cartesian product ordering. Note that the substitutions cover all possible cases of membership in the predecessor class. (Contributed by Scott Fenton, 2-Feb-2025.)
Hypotheses
Ref Expression
xpord3indd.x (𝜅𝑋𝐴)
xpord3indd.y (𝜅𝑌𝐵)
xpord3indd.z (𝜅𝑍𝐶)
xpord3indd.1 (𝜅𝑅 Fr 𝐴)
xpord3indd.2 (𝜅𝑅 Po 𝐴)
xpord3indd.3 (𝜅𝑅 Se 𝐴)
xpord3indd.4 (𝜅𝑆 Fr 𝐵)
xpord3indd.5 (𝜅𝑆 Po 𝐵)
xpord3indd.6 (𝜅𝑆 Se 𝐵)
xpord3indd.7 (𝜅𝑇 Fr 𝐶)
xpord3indd.8 (𝜅𝑇 Po 𝐶)
xpord3indd.9 (𝜅𝑇 Se 𝐶)
xpord3indd.10 (𝑎 = 𝑑 → (𝜑𝜓))
xpord3indd.11 (𝑏 = 𝑒 → (𝜓𝜒))
xpord3indd.12 (𝑐 = 𝑓 → (𝜒𝜃))
xpord3indd.13 (𝑎 = 𝑑 → (𝜏𝜃))
xpord3indd.14 (𝑏 = 𝑒 → (𝜂𝜏))
xpord3indd.15 (𝑏 = 𝑒 → (𝜁𝜃))
xpord3indd.16 (𝑐 = 𝑓 → (𝜎𝜏))
xpord3indd.17 (𝑎 = 𝑋 → (𝜑𝜌))
xpord3indd.18 (𝑏 = 𝑌 → (𝜌𝜇))
xpord3indd.19 (𝑐 = 𝑍 → (𝜇𝜆))
xpord3indd.i ((𝜅 ∧ (𝑎𝐴𝑏𝐵𝑐𝐶)) → (((∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)𝜃 ∧ ∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)𝜒 ∧ ∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)𝜁) ∧ (∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)𝜓 ∧ ∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)𝜏 ∧ ∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)𝜎) ∧ ∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)𝜂) → 𝜑))
Assertion
Ref Expression
xpord3indd (𝜅𝜆)
Distinct variable groups:   𝐴,𝑎,𝑏,𝑐,𝑑,𝑒,𝑓   𝐵,𝑎,𝑏,𝑐,𝑑,𝑒,𝑓   𝐶,𝑎,𝑏,𝑐,𝑑,𝑒,𝑓   𝑅,𝑎,𝑏,𝑐,𝑑,𝑒,𝑓   𝑆,𝑎,𝑏,𝑐,𝑑,𝑒,𝑓   𝑇,𝑎,𝑏,𝑐,𝑑,𝑒,𝑓   𝑋,𝑎,𝑏,𝑐   𝑌,𝑏,𝑐   𝑍,𝑐   𝜅,𝑎,𝑏,𝑐,𝑑,𝑒,𝑓   𝜓,𝑎   𝜌,𝑎   𝜃,𝑎   𝜒,𝑏,𝑓   𝜇,𝑏   𝜃,𝑏   𝜆,𝑐   𝜃,𝑐   𝜑,𝑑   𝜏,𝑑   𝜂,𝑒   𝜓,𝑒   𝜁,𝑒   𝜎,𝑓
Allowed substitution hints:   𝜑(𝑒,𝑓,𝑎,𝑏,𝑐)   𝜓(𝑓,𝑏,𝑐,𝑑)   𝜒(𝑒,𝑎,𝑐,𝑑)   𝜃(𝑒,𝑓,𝑑)   𝜏(𝑒,𝑓,𝑎,𝑏,𝑐)   𝜂(𝑓,𝑎,𝑏,𝑐,𝑑)   𝜁(𝑓,𝑎,𝑏,𝑐,𝑑)   𝜎(𝑒,𝑎,𝑏,𝑐,𝑑)   𝜌(𝑒,𝑓,𝑏,𝑐,𝑑)   𝜇(𝑒,𝑓,𝑎,𝑐,𝑑)   𝜆(𝑒,𝑓,𝑎,𝑏,𝑑)   𝑋(𝑒,𝑓,𝑑)   𝑌(𝑒,𝑓,𝑎,𝑑)   𝑍(𝑒,𝑓,𝑎,𝑏,𝑑)

Proof of Theorem xpord3indd
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2737 . 2 {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((𝐴 × 𝐵) × 𝐶) ∧ 𝑦 ∈ ((𝐴 × 𝐵) × 𝐶) ∧ ((((1st ‘(1st𝑥))𝑅(1st ‘(1st𝑦)) ∨ (1st ‘(1st𝑥)) = (1st ‘(1st𝑦))) ∧ ((2nd ‘(1st𝑥))𝑆(2nd ‘(1st𝑦)) ∨ (2nd ‘(1st𝑥)) = (2nd ‘(1st𝑦))) ∧ ((2nd𝑥)𝑇(2nd𝑦) ∨ (2nd𝑥) = (2nd𝑦))) ∧ 𝑥𝑦))} = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((𝐴 × 𝐵) × 𝐶) ∧ 𝑦 ∈ ((𝐴 × 𝐵) × 𝐶) ∧ ((((1st ‘(1st𝑥))𝑅(1st ‘(1st𝑦)) ∨ (1st ‘(1st𝑥)) = (1st ‘(1st𝑦))) ∧ ((2nd ‘(1st𝑥))𝑆(2nd ‘(1st𝑦)) ∨ (2nd ‘(1st𝑥)) = (2nd ‘(1st𝑦))) ∧ ((2nd𝑥)𝑇(2nd𝑦) ∨ (2nd𝑥) = (2nd𝑦))) ∧ 𝑥𝑦))}
2 xpord3indd.x . 2 (𝜅𝑋𝐴)
3 xpord3indd.y . 2 (𝜅𝑌𝐵)
4 xpord3indd.z . 2 (𝜅𝑍𝐶)
5 xpord3indd.1 . 2 (𝜅𝑅 Fr 𝐴)
6 xpord3indd.2 . 2 (𝜅𝑅 Po 𝐴)
7 xpord3indd.3 . 2 (𝜅𝑅 Se 𝐴)
8 xpord3indd.4 . 2 (𝜅𝑆 Fr 𝐵)
9 xpord3indd.5 . 2 (𝜅𝑆 Po 𝐵)
10 xpord3indd.6 . 2 (𝜅𝑆 Se 𝐵)
11 xpord3indd.7 . 2 (𝜅𝑇 Fr 𝐶)
12 xpord3indd.8 . 2 (𝜅𝑇 Po 𝐶)
13 xpord3indd.9 . 2 (𝜅𝑇 Se 𝐶)
14 xpord3indd.10 . 2 (𝑎 = 𝑑 → (𝜑𝜓))
15 xpord3indd.11 . 2 (𝑏 = 𝑒 → (𝜓𝜒))
16 xpord3indd.12 . 2 (𝑐 = 𝑓 → (𝜒𝜃))
17 xpord3indd.13 . 2 (𝑎 = 𝑑 → (𝜏𝜃))
18 xpord3indd.14 . 2 (𝑏 = 𝑒 → (𝜂𝜏))
19 xpord3indd.15 . 2 (𝑏 = 𝑒 → (𝜁𝜃))
20 xpord3indd.16 . 2 (𝑐 = 𝑓 → (𝜎𝜏))
21 xpord3indd.17 . 2 (𝑎 = 𝑋 → (𝜑𝜌))
22 xpord3indd.18 . 2 (𝑏 = 𝑌 → (𝜌𝜇))
23 xpord3indd.19 . 2 (𝑐 = 𝑍 → (𝜇𝜆))
24 xpord3indd.i . 2 ((𝜅 ∧ (𝑎𝐴𝑏𝐵𝑐𝐶)) → (((∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)𝜃 ∧ ∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)𝜒 ∧ ∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)𝜁) ∧ (∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)𝜓 ∧ ∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)𝜏 ∧ ∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)𝜎) ∧ ∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)𝜂) → 𝜑))
251, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24xpord3inddlem 8078 1 (𝜅𝜆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wo 845  w3a 1087   = wceq 1541  wcel 2106  wne 2941  wral 3062   class class class wbr 5103  {copab 5165   Po wpo 5541   Fr wfr 5583   Se wse 5584   × cxp 5629  Predcpred 6250  cfv 6493  1st c1st 7911  2nd c2nd 7912
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-sep 5254  ax-nul 5261  ax-pow 5318  ax-pr 5382  ax-un 7664
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3406  df-v 3445  df-sbc 3738  df-csb 3854  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-nul 4281  df-if 4485  df-pw 4560  df-sn 4585  df-pr 4587  df-op 4591  df-ot 4593  df-uni 4864  df-iun 4954  df-br 5104  df-opab 5166  df-mpt 5187  df-id 5529  df-po 5543  df-fr 5586  df-se 5587  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6251  df-iota 6445  df-fun 6495  df-fv 6501  df-1st 7913  df-2nd 7914
This theorem is referenced by:  xpord3ind  8080
  Copyright terms: Public domain W3C validator