MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpord3indd Structured version   Visualization version   GIF version

Theorem xpord3indd 8111
Description: Induction over the triple Cartesian product ordering. Note that the substitutions cover all possible cases of membership in the predecessor class. (Contributed by Scott Fenton, 2-Feb-2025.)
Hypotheses
Ref Expression
xpord3indd.x (𝜅𝑋𝐴)
xpord3indd.y (𝜅𝑌𝐵)
xpord3indd.z (𝜅𝑍𝐶)
xpord3indd.1 (𝜅𝑅 Fr 𝐴)
xpord3indd.2 (𝜅𝑅 Po 𝐴)
xpord3indd.3 (𝜅𝑅 Se 𝐴)
xpord3indd.4 (𝜅𝑆 Fr 𝐵)
xpord3indd.5 (𝜅𝑆 Po 𝐵)
xpord3indd.6 (𝜅𝑆 Se 𝐵)
xpord3indd.7 (𝜅𝑇 Fr 𝐶)
xpord3indd.8 (𝜅𝑇 Po 𝐶)
xpord3indd.9 (𝜅𝑇 Se 𝐶)
xpord3indd.10 (𝑎 = 𝑑 → (𝜑𝜓))
xpord3indd.11 (𝑏 = 𝑒 → (𝜓𝜒))
xpord3indd.12 (𝑐 = 𝑓 → (𝜒𝜃))
xpord3indd.13 (𝑎 = 𝑑 → (𝜏𝜃))
xpord3indd.14 (𝑏 = 𝑒 → (𝜂𝜏))
xpord3indd.15 (𝑏 = 𝑒 → (𝜁𝜃))
xpord3indd.16 (𝑐 = 𝑓 → (𝜎𝜏))
xpord3indd.17 (𝑎 = 𝑋 → (𝜑𝜌))
xpord3indd.18 (𝑏 = 𝑌 → (𝜌𝜇))
xpord3indd.19 (𝑐 = 𝑍 → (𝜇𝜆))
xpord3indd.i ((𝜅 ∧ (𝑎𝐴𝑏𝐵𝑐𝐶)) → (((∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)𝜃 ∧ ∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)𝜒 ∧ ∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)𝜁) ∧ (∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)𝜓 ∧ ∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)𝜏 ∧ ∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)𝜎) ∧ ∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)𝜂) → 𝜑))
Assertion
Ref Expression
xpord3indd (𝜅𝜆)
Distinct variable groups:   𝐴,𝑎,𝑏,𝑐,𝑑,𝑒,𝑓   𝐵,𝑎,𝑏,𝑐,𝑑,𝑒,𝑓   𝐶,𝑎,𝑏,𝑐,𝑑,𝑒,𝑓   𝑅,𝑎,𝑏,𝑐,𝑑,𝑒,𝑓   𝑆,𝑎,𝑏,𝑐,𝑑,𝑒,𝑓   𝑇,𝑎,𝑏,𝑐,𝑑,𝑒,𝑓   𝑋,𝑎,𝑏,𝑐   𝑌,𝑏,𝑐   𝑍,𝑐   𝜅,𝑎,𝑏,𝑐,𝑑,𝑒,𝑓   𝜓,𝑎   𝜌,𝑎   𝜃,𝑎   𝜒,𝑏,𝑓   𝜇,𝑏   𝜃,𝑏   𝜆,𝑐   𝜃,𝑐   𝜑,𝑑   𝜏,𝑑   𝜂,𝑒   𝜓,𝑒   𝜁,𝑒   𝜎,𝑓
Allowed substitution hints:   𝜑(𝑒,𝑓,𝑎,𝑏,𝑐)   𝜓(𝑓,𝑏,𝑐,𝑑)   𝜒(𝑒,𝑎,𝑐,𝑑)   𝜃(𝑒,𝑓,𝑑)   𝜏(𝑒,𝑓,𝑎,𝑏,𝑐)   𝜂(𝑓,𝑎,𝑏,𝑐,𝑑)   𝜁(𝑓,𝑎,𝑏,𝑐,𝑑)   𝜎(𝑒,𝑎,𝑏,𝑐,𝑑)   𝜌(𝑒,𝑓,𝑏,𝑐,𝑑)   𝜇(𝑒,𝑓,𝑎,𝑐,𝑑)   𝜆(𝑒,𝑓,𝑎,𝑏,𝑑)   𝑋(𝑒,𝑓,𝑑)   𝑌(𝑒,𝑓,𝑎,𝑑)   𝑍(𝑒,𝑓,𝑎,𝑏,𝑑)

Proof of Theorem xpord3indd
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . 2 {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((𝐴 × 𝐵) × 𝐶) ∧ 𝑦 ∈ ((𝐴 × 𝐵) × 𝐶) ∧ ((((1st ‘(1st𝑥))𝑅(1st ‘(1st𝑦)) ∨ (1st ‘(1st𝑥)) = (1st ‘(1st𝑦))) ∧ ((2nd ‘(1st𝑥))𝑆(2nd ‘(1st𝑦)) ∨ (2nd ‘(1st𝑥)) = (2nd ‘(1st𝑦))) ∧ ((2nd𝑥)𝑇(2nd𝑦) ∨ (2nd𝑥) = (2nd𝑦))) ∧ 𝑥𝑦))} = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((𝐴 × 𝐵) × 𝐶) ∧ 𝑦 ∈ ((𝐴 × 𝐵) × 𝐶) ∧ ((((1st ‘(1st𝑥))𝑅(1st ‘(1st𝑦)) ∨ (1st ‘(1st𝑥)) = (1st ‘(1st𝑦))) ∧ ((2nd ‘(1st𝑥))𝑆(2nd ‘(1st𝑦)) ∨ (2nd ‘(1st𝑥)) = (2nd ‘(1st𝑦))) ∧ ((2nd𝑥)𝑇(2nd𝑦) ∨ (2nd𝑥) = (2nd𝑦))) ∧ 𝑥𝑦))}
2 xpord3indd.x . 2 (𝜅𝑋𝐴)
3 xpord3indd.y . 2 (𝜅𝑌𝐵)
4 xpord3indd.z . 2 (𝜅𝑍𝐶)
5 xpord3indd.1 . 2 (𝜅𝑅 Fr 𝐴)
6 xpord3indd.2 . 2 (𝜅𝑅 Po 𝐴)
7 xpord3indd.3 . 2 (𝜅𝑅 Se 𝐴)
8 xpord3indd.4 . 2 (𝜅𝑆 Fr 𝐵)
9 xpord3indd.5 . 2 (𝜅𝑆 Po 𝐵)
10 xpord3indd.6 . 2 (𝜅𝑆 Se 𝐵)
11 xpord3indd.7 . 2 (𝜅𝑇 Fr 𝐶)
12 xpord3indd.8 . 2 (𝜅𝑇 Po 𝐶)
13 xpord3indd.9 . 2 (𝜅𝑇 Se 𝐶)
14 xpord3indd.10 . 2 (𝑎 = 𝑑 → (𝜑𝜓))
15 xpord3indd.11 . 2 (𝑏 = 𝑒 → (𝜓𝜒))
16 xpord3indd.12 . 2 (𝑐 = 𝑓 → (𝜒𝜃))
17 xpord3indd.13 . 2 (𝑎 = 𝑑 → (𝜏𝜃))
18 xpord3indd.14 . 2 (𝑏 = 𝑒 → (𝜂𝜏))
19 xpord3indd.15 . 2 (𝑏 = 𝑒 → (𝜁𝜃))
20 xpord3indd.16 . 2 (𝑐 = 𝑓 → (𝜎𝜏))
21 xpord3indd.17 . 2 (𝑎 = 𝑋 → (𝜑𝜌))
22 xpord3indd.18 . 2 (𝑏 = 𝑌 → (𝜌𝜇))
23 xpord3indd.19 . 2 (𝑐 = 𝑍 → (𝜇𝜆))
24 xpord3indd.i . 2 ((𝜅 ∧ (𝑎𝐴𝑏𝐵𝑐𝐶)) → (((∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)𝜃 ∧ ∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)𝜒 ∧ ∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)𝜁) ∧ (∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)𝜓 ∧ ∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)𝜏 ∧ ∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)𝜎) ∧ ∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)𝜂) → 𝜑))
251, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24xpord3inddlem 8110 1 (𝜅𝜆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044   class class class wbr 5102  {copab 5164   Po wpo 5537   Fr wfr 5581   Se wse 5582   × cxp 5629  Predcpred 6261  cfv 6499  1st c1st 7945  2nd c2nd 7946
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-ot 4594  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-po 5539  df-fr 5584  df-se 5585  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-iota 6452  df-fun 6501  df-fv 6507  df-1st 7947  df-2nd 7948
This theorem is referenced by:  xpord3ind  8112
  Copyright terms: Public domain W3C validator