![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xpord3indd | Structured version Visualization version GIF version |
Description: Induction over the triple Cartesian product ordering. Note that the substitutions cover all possible cases of membership in the predecessor class. (Contributed by Scott Fenton, 2-Feb-2025.) |
Ref | Expression |
---|---|
xpord3indd.x | ⊢ (𝜅 → 𝑋 ∈ 𝐴) |
xpord3indd.y | ⊢ (𝜅 → 𝑌 ∈ 𝐵) |
xpord3indd.z | ⊢ (𝜅 → 𝑍 ∈ 𝐶) |
xpord3indd.1 | ⊢ (𝜅 → 𝑅 Fr 𝐴) |
xpord3indd.2 | ⊢ (𝜅 → 𝑅 Po 𝐴) |
xpord3indd.3 | ⊢ (𝜅 → 𝑅 Se 𝐴) |
xpord3indd.4 | ⊢ (𝜅 → 𝑆 Fr 𝐵) |
xpord3indd.5 | ⊢ (𝜅 → 𝑆 Po 𝐵) |
xpord3indd.6 | ⊢ (𝜅 → 𝑆 Se 𝐵) |
xpord3indd.7 | ⊢ (𝜅 → 𝑇 Fr 𝐶) |
xpord3indd.8 | ⊢ (𝜅 → 𝑇 Po 𝐶) |
xpord3indd.9 | ⊢ (𝜅 → 𝑇 Se 𝐶) |
xpord3indd.10 | ⊢ (𝑎 = 𝑑 → (𝜑 ↔ 𝜓)) |
xpord3indd.11 | ⊢ (𝑏 = 𝑒 → (𝜓 ↔ 𝜒)) |
xpord3indd.12 | ⊢ (𝑐 = 𝑓 → (𝜒 ↔ 𝜃)) |
xpord3indd.13 | ⊢ (𝑎 = 𝑑 → (𝜏 ↔ 𝜃)) |
xpord3indd.14 | ⊢ (𝑏 = 𝑒 → (𝜂 ↔ 𝜏)) |
xpord3indd.15 | ⊢ (𝑏 = 𝑒 → (𝜁 ↔ 𝜃)) |
xpord3indd.16 | ⊢ (𝑐 = 𝑓 → (𝜎 ↔ 𝜏)) |
xpord3indd.17 | ⊢ (𝑎 = 𝑋 → (𝜑 ↔ 𝜌)) |
xpord3indd.18 | ⊢ (𝑏 = 𝑌 → (𝜌 ↔ 𝜇)) |
xpord3indd.19 | ⊢ (𝑐 = 𝑍 → (𝜇 ↔ 𝜆)) |
xpord3indd.i | ⊢ ((𝜅 ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → (((∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)𝜃 ∧ ∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)𝜒 ∧ ∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)𝜁) ∧ (∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)𝜓 ∧ ∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)𝜏 ∧ ∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)𝜎) ∧ ∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)𝜂) → 𝜑)) |
Ref | Expression |
---|---|
xpord3indd | ⊢ (𝜅 → 𝜆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2724 | . 2 ⊢ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((𝐴 × 𝐵) × 𝐶) ∧ 𝑦 ∈ ((𝐴 × 𝐵) × 𝐶) ∧ ((((1st ‘(1st ‘𝑥))𝑅(1st ‘(1st ‘𝑦)) ∨ (1st ‘(1st ‘𝑥)) = (1st ‘(1st ‘𝑦))) ∧ ((2nd ‘(1st ‘𝑥))𝑆(2nd ‘(1st ‘𝑦)) ∨ (2nd ‘(1st ‘𝑥)) = (2nd ‘(1st ‘𝑦))) ∧ ((2nd ‘𝑥)𝑇(2nd ‘𝑦) ∨ (2nd ‘𝑥) = (2nd ‘𝑦))) ∧ 𝑥 ≠ 𝑦))} = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((𝐴 × 𝐵) × 𝐶) ∧ 𝑦 ∈ ((𝐴 × 𝐵) × 𝐶) ∧ ((((1st ‘(1st ‘𝑥))𝑅(1st ‘(1st ‘𝑦)) ∨ (1st ‘(1st ‘𝑥)) = (1st ‘(1st ‘𝑦))) ∧ ((2nd ‘(1st ‘𝑥))𝑆(2nd ‘(1st ‘𝑦)) ∨ (2nd ‘(1st ‘𝑥)) = (2nd ‘(1st ‘𝑦))) ∧ ((2nd ‘𝑥)𝑇(2nd ‘𝑦) ∨ (2nd ‘𝑥) = (2nd ‘𝑦))) ∧ 𝑥 ≠ 𝑦))} | |
2 | xpord3indd.x | . 2 ⊢ (𝜅 → 𝑋 ∈ 𝐴) | |
3 | xpord3indd.y | . 2 ⊢ (𝜅 → 𝑌 ∈ 𝐵) | |
4 | xpord3indd.z | . 2 ⊢ (𝜅 → 𝑍 ∈ 𝐶) | |
5 | xpord3indd.1 | . 2 ⊢ (𝜅 → 𝑅 Fr 𝐴) | |
6 | xpord3indd.2 | . 2 ⊢ (𝜅 → 𝑅 Po 𝐴) | |
7 | xpord3indd.3 | . 2 ⊢ (𝜅 → 𝑅 Se 𝐴) | |
8 | xpord3indd.4 | . 2 ⊢ (𝜅 → 𝑆 Fr 𝐵) | |
9 | xpord3indd.5 | . 2 ⊢ (𝜅 → 𝑆 Po 𝐵) | |
10 | xpord3indd.6 | . 2 ⊢ (𝜅 → 𝑆 Se 𝐵) | |
11 | xpord3indd.7 | . 2 ⊢ (𝜅 → 𝑇 Fr 𝐶) | |
12 | xpord3indd.8 | . 2 ⊢ (𝜅 → 𝑇 Po 𝐶) | |
13 | xpord3indd.9 | . 2 ⊢ (𝜅 → 𝑇 Se 𝐶) | |
14 | xpord3indd.10 | . 2 ⊢ (𝑎 = 𝑑 → (𝜑 ↔ 𝜓)) | |
15 | xpord3indd.11 | . 2 ⊢ (𝑏 = 𝑒 → (𝜓 ↔ 𝜒)) | |
16 | xpord3indd.12 | . 2 ⊢ (𝑐 = 𝑓 → (𝜒 ↔ 𝜃)) | |
17 | xpord3indd.13 | . 2 ⊢ (𝑎 = 𝑑 → (𝜏 ↔ 𝜃)) | |
18 | xpord3indd.14 | . 2 ⊢ (𝑏 = 𝑒 → (𝜂 ↔ 𝜏)) | |
19 | xpord3indd.15 | . 2 ⊢ (𝑏 = 𝑒 → (𝜁 ↔ 𝜃)) | |
20 | xpord3indd.16 | . 2 ⊢ (𝑐 = 𝑓 → (𝜎 ↔ 𝜏)) | |
21 | xpord3indd.17 | . 2 ⊢ (𝑎 = 𝑋 → (𝜑 ↔ 𝜌)) | |
22 | xpord3indd.18 | . 2 ⊢ (𝑏 = 𝑌 → (𝜌 ↔ 𝜇)) | |
23 | xpord3indd.19 | . 2 ⊢ (𝑐 = 𝑍 → (𝜇 ↔ 𝜆)) | |
24 | xpord3indd.i | . 2 ⊢ ((𝜅 ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → (((∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)𝜃 ∧ ∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)𝜒 ∧ ∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)𝜁) ∧ (∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)𝜓 ∧ ∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)𝜏 ∧ ∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)𝜎) ∧ ∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)𝜂) → 𝜑)) | |
25 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24 | xpord3inddlem 8134 | 1 ⊢ (𝜅 → 𝜆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∨ wo 844 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ≠ wne 2932 ∀wral 3053 class class class wbr 5138 {copab 5200 Po wpo 5576 Fr wfr 5618 Se wse 5619 × cxp 5664 Predcpred 6289 ‘cfv 6533 1st c1st 7966 2nd c2nd 7967 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-ot 4629 df-uni 4900 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-id 5564 df-po 5578 df-fr 5621 df-se 5622 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-pred 6290 df-iota 6485 df-fun 6535 df-fv 6541 df-1st 7968 df-2nd 7969 |
This theorem is referenced by: xpord3ind 8136 |
Copyright terms: Public domain | W3C validator |