MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpord3indd Structured version   Visualization version   GIF version

Theorem xpord3indd 8088
Description: Induction over the triple Cartesian product ordering. Note that the substitutions cover all possible cases of membership in the predecessor class. (Contributed by Scott Fenton, 2-Feb-2025.)
Hypotheses
Ref Expression
xpord3indd.x (𝜅𝑋𝐴)
xpord3indd.y (𝜅𝑌𝐵)
xpord3indd.z (𝜅𝑍𝐶)
xpord3indd.1 (𝜅𝑅 Fr 𝐴)
xpord3indd.2 (𝜅𝑅 Po 𝐴)
xpord3indd.3 (𝜅𝑅 Se 𝐴)
xpord3indd.4 (𝜅𝑆 Fr 𝐵)
xpord3indd.5 (𝜅𝑆 Po 𝐵)
xpord3indd.6 (𝜅𝑆 Se 𝐵)
xpord3indd.7 (𝜅𝑇 Fr 𝐶)
xpord3indd.8 (𝜅𝑇 Po 𝐶)
xpord3indd.9 (𝜅𝑇 Se 𝐶)
xpord3indd.10 (𝑎 = 𝑑 → (𝜑𝜓))
xpord3indd.11 (𝑏 = 𝑒 → (𝜓𝜒))
xpord3indd.12 (𝑐 = 𝑓 → (𝜒𝜃))
xpord3indd.13 (𝑎 = 𝑑 → (𝜏𝜃))
xpord3indd.14 (𝑏 = 𝑒 → (𝜂𝜏))
xpord3indd.15 (𝑏 = 𝑒 → (𝜁𝜃))
xpord3indd.16 (𝑐 = 𝑓 → (𝜎𝜏))
xpord3indd.17 (𝑎 = 𝑋 → (𝜑𝜌))
xpord3indd.18 (𝑏 = 𝑌 → (𝜌𝜇))
xpord3indd.19 (𝑐 = 𝑍 → (𝜇𝜆))
xpord3indd.i ((𝜅 ∧ (𝑎𝐴𝑏𝐵𝑐𝐶)) → (((∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)𝜃 ∧ ∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)𝜒 ∧ ∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)𝜁) ∧ (∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)𝜓 ∧ ∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)𝜏 ∧ ∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)𝜎) ∧ ∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)𝜂) → 𝜑))
Assertion
Ref Expression
xpord3indd (𝜅𝜆)
Distinct variable groups:   𝐴,𝑎,𝑏,𝑐,𝑑,𝑒,𝑓   𝐵,𝑎,𝑏,𝑐,𝑑,𝑒,𝑓   𝐶,𝑎,𝑏,𝑐,𝑑,𝑒,𝑓   𝑅,𝑎,𝑏,𝑐,𝑑,𝑒,𝑓   𝑆,𝑎,𝑏,𝑐,𝑑,𝑒,𝑓   𝑇,𝑎,𝑏,𝑐,𝑑,𝑒,𝑓   𝑋,𝑎,𝑏,𝑐   𝑌,𝑏,𝑐   𝑍,𝑐   𝜅,𝑎,𝑏,𝑐,𝑑,𝑒,𝑓   𝜓,𝑎   𝜌,𝑎   𝜃,𝑎   𝜒,𝑏,𝑓   𝜇,𝑏   𝜃,𝑏   𝜆,𝑐   𝜃,𝑐   𝜑,𝑑   𝜏,𝑑   𝜂,𝑒   𝜓,𝑒   𝜁,𝑒   𝜎,𝑓
Allowed substitution hints:   𝜑(𝑒,𝑓,𝑎,𝑏,𝑐)   𝜓(𝑓,𝑏,𝑐,𝑑)   𝜒(𝑒,𝑎,𝑐,𝑑)   𝜃(𝑒,𝑓,𝑑)   𝜏(𝑒,𝑓,𝑎,𝑏,𝑐)   𝜂(𝑓,𝑎,𝑏,𝑐,𝑑)   𝜁(𝑓,𝑎,𝑏,𝑐,𝑑)   𝜎(𝑒,𝑎,𝑏,𝑐,𝑑)   𝜌(𝑒,𝑓,𝑏,𝑐,𝑑)   𝜇(𝑒,𝑓,𝑎,𝑐,𝑑)   𝜆(𝑒,𝑓,𝑎,𝑏,𝑑)   𝑋(𝑒,𝑓,𝑑)   𝑌(𝑒,𝑓,𝑎,𝑑)   𝑍(𝑒,𝑓,𝑎,𝑏,𝑑)

Proof of Theorem xpord3indd
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . 2 {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((𝐴 × 𝐵) × 𝐶) ∧ 𝑦 ∈ ((𝐴 × 𝐵) × 𝐶) ∧ ((((1st ‘(1st𝑥))𝑅(1st ‘(1st𝑦)) ∨ (1st ‘(1st𝑥)) = (1st ‘(1st𝑦))) ∧ ((2nd ‘(1st𝑥))𝑆(2nd ‘(1st𝑦)) ∨ (2nd ‘(1st𝑥)) = (2nd ‘(1st𝑦))) ∧ ((2nd𝑥)𝑇(2nd𝑦) ∨ (2nd𝑥) = (2nd𝑦))) ∧ 𝑥𝑦))} = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((𝐴 × 𝐵) × 𝐶) ∧ 𝑦 ∈ ((𝐴 × 𝐵) × 𝐶) ∧ ((((1st ‘(1st𝑥))𝑅(1st ‘(1st𝑦)) ∨ (1st ‘(1st𝑥)) = (1st ‘(1st𝑦))) ∧ ((2nd ‘(1st𝑥))𝑆(2nd ‘(1st𝑦)) ∨ (2nd ‘(1st𝑥)) = (2nd ‘(1st𝑦))) ∧ ((2nd𝑥)𝑇(2nd𝑦) ∨ (2nd𝑥) = (2nd𝑦))) ∧ 𝑥𝑦))}
2 xpord3indd.x . 2 (𝜅𝑋𝐴)
3 xpord3indd.y . 2 (𝜅𝑌𝐵)
4 xpord3indd.z . 2 (𝜅𝑍𝐶)
5 xpord3indd.1 . 2 (𝜅𝑅 Fr 𝐴)
6 xpord3indd.2 . 2 (𝜅𝑅 Po 𝐴)
7 xpord3indd.3 . 2 (𝜅𝑅 Se 𝐴)
8 xpord3indd.4 . 2 (𝜅𝑆 Fr 𝐵)
9 xpord3indd.5 . 2 (𝜅𝑆 Po 𝐵)
10 xpord3indd.6 . 2 (𝜅𝑆 Se 𝐵)
11 xpord3indd.7 . 2 (𝜅𝑇 Fr 𝐶)
12 xpord3indd.8 . 2 (𝜅𝑇 Po 𝐶)
13 xpord3indd.9 . 2 (𝜅𝑇 Se 𝐶)
14 xpord3indd.10 . 2 (𝑎 = 𝑑 → (𝜑𝜓))
15 xpord3indd.11 . 2 (𝑏 = 𝑒 → (𝜓𝜒))
16 xpord3indd.12 . 2 (𝑐 = 𝑓 → (𝜒𝜃))
17 xpord3indd.13 . 2 (𝑎 = 𝑑 → (𝜏𝜃))
18 xpord3indd.14 . 2 (𝑏 = 𝑒 → (𝜂𝜏))
19 xpord3indd.15 . 2 (𝑏 = 𝑒 → (𝜁𝜃))
20 xpord3indd.16 . 2 (𝑐 = 𝑓 → (𝜎𝜏))
21 xpord3indd.17 . 2 (𝑎 = 𝑋 → (𝜑𝜌))
22 xpord3indd.18 . 2 (𝑏 = 𝑌 → (𝜌𝜇))
23 xpord3indd.19 . 2 (𝑐 = 𝑍 → (𝜇𝜆))
24 xpord3indd.i . 2 ((𝜅 ∧ (𝑎𝐴𝑏𝐵𝑐𝐶)) → (((∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)𝜃 ∧ ∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)𝜒 ∧ ∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)𝜁) ∧ (∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)𝜓 ∧ ∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)𝜏 ∧ ∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)𝜎) ∧ ∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)𝜂) → 𝜑))
251, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24xpord3inddlem 8087 1 (𝜅𝜆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044   class class class wbr 5092  {copab 5154   Po wpo 5525   Fr wfr 5569   Se wse 5570   × cxp 5617  Predcpred 6248  cfv 6482  1st c1st 7922  2nd c2nd 7923
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-ot 4586  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-po 5527  df-fr 5572  df-se 5573  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-iota 6438  df-fun 6484  df-fv 6490  df-1st 7924  df-2nd 7925
This theorem is referenced by:  xpord3ind  8089
  Copyright terms: Public domain W3C validator