Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fllog2 Structured version   Visualization version   GIF version

Theorem fllog2 41628
Description: The floor of the binary logarithm of 2 to the power of an element of a half-open integer interval bounded by powers of 2 is equal to the integer. (Contributed by AV, 31-May-2020.)
Assertion
Ref Expression
fllog2 ((𝐼 ∈ ℕ0𝑁 ∈ ((2↑𝐼)..^(2↑(𝐼 + 1)))) → (⌊‘(2 logb 𝑁)) = 𝐼)

Proof of Theorem fllog2
StepHypRef Expression
1 nn0z 11345 . . . 4 (𝐼 ∈ ℕ0𝐼 ∈ ℤ)
21adantr 481 . . 3 ((𝐼 ∈ ℕ0𝑁 ∈ ((2↑𝐼)..^(2↑(𝐼 + 1)))) → 𝐼 ∈ ℤ)
3 2rp 11781 . . . . . 6 2 ∈ ℝ+
43a1i 11 . . . . 5 ((𝐼 ∈ ℕ0𝑁 ∈ ((2↑𝐼)..^(2↑(𝐼 + 1)))) → 2 ∈ ℝ+)
5 elfzoelz 12408 . . . . . . . 8 (𝑁 ∈ ((2↑𝐼)..^(2↑(𝐼 + 1))) → 𝑁 ∈ ℤ)
65zred 11426 . . . . . . 7 (𝑁 ∈ ((2↑𝐼)..^(2↑(𝐼 + 1))) → 𝑁 ∈ ℝ)
76adantl 482 . . . . . 6 ((𝐼 ∈ ℕ0𝑁 ∈ ((2↑𝐼)..^(2↑(𝐼 + 1)))) → 𝑁 ∈ ℝ)
8 elfzo2 12411 . . . . . . . 8 (𝑁 ∈ ((2↑𝐼)..^(2↑(𝐼 + 1))) ↔ (𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ (2↑(𝐼 + 1)) ∈ ℤ ∧ 𝑁 < (2↑(𝐼 + 1))))
9 eluz2 11637 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘(2↑𝐼)) ↔ ((2↑𝐼) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (2↑𝐼) ≤ 𝑁))
10 2re 11035 . . . . . . . . . . . . . . . . 17 2 ∈ ℝ
1110a1i 11 . . . . . . . . . . . . . . . 16 (𝐼 ∈ ℕ0 → 2 ∈ ℝ)
12 2pos 11057 . . . . . . . . . . . . . . . . 17 0 < 2
1312a1i 11 . . . . . . . . . . . . . . . 16 (𝐼 ∈ ℕ0 → 0 < 2)
14 expgt0 12830 . . . . . . . . . . . . . . . 16 ((2 ∈ ℝ ∧ 𝐼 ∈ ℤ ∧ 0 < 2) → 0 < (2↑𝐼))
1511, 1, 13, 14syl3anc 1323 . . . . . . . . . . . . . . 15 (𝐼 ∈ ℕ0 → 0 < (2↑𝐼))
1615adantl 482 . . . . . . . . . . . . . 14 ((((2↑𝐼) ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐼 ∈ ℕ0) → 0 < (2↑𝐼))
17 0red 9986 . . . . . . . . . . . . . . 15 ((((2↑𝐼) ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐼 ∈ ℕ0) → 0 ∈ ℝ)
18 zre 11326 . . . . . . . . . . . . . . . . 17 ((2↑𝐼) ∈ ℤ → (2↑𝐼) ∈ ℝ)
1918adantr 481 . . . . . . . . . . . . . . . 16 (((2↑𝐼) ∈ ℤ ∧ 𝑁 ∈ ℤ) → (2↑𝐼) ∈ ℝ)
2019adantr 481 . . . . . . . . . . . . . . 15 ((((2↑𝐼) ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐼 ∈ ℕ0) → (2↑𝐼) ∈ ℝ)
21 zre 11326 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
2221ad2antlr 762 . . . . . . . . . . . . . . 15 ((((2↑𝐼) ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐼 ∈ ℕ0) → 𝑁 ∈ ℝ)
23 ltletr 10074 . . . . . . . . . . . . . . 15 ((0 ∈ ℝ ∧ (2↑𝐼) ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((0 < (2↑𝐼) ∧ (2↑𝐼) ≤ 𝑁) → 0 < 𝑁))
2417, 20, 22, 23syl3anc 1323 . . . . . . . . . . . . . 14 ((((2↑𝐼) ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐼 ∈ ℕ0) → ((0 < (2↑𝐼) ∧ (2↑𝐼) ≤ 𝑁) → 0 < 𝑁))
2516, 24mpand 710 . . . . . . . . . . . . 13 ((((2↑𝐼) ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐼 ∈ ℕ0) → ((2↑𝐼) ≤ 𝑁 → 0 < 𝑁))
2625ex 450 . . . . . . . . . . . 12 (((2↑𝐼) ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐼 ∈ ℕ0 → ((2↑𝐼) ≤ 𝑁 → 0 < 𝑁)))
2726com23 86 . . . . . . . . . . 11 (((2↑𝐼) ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((2↑𝐼) ≤ 𝑁 → (𝐼 ∈ ℕ0 → 0 < 𝑁)))
28273impia 1258 . . . . . . . . . 10 (((2↑𝐼) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (2↑𝐼) ≤ 𝑁) → (𝐼 ∈ ℕ0 → 0 < 𝑁))
299, 28sylbi 207 . . . . . . . . 9 (𝑁 ∈ (ℤ‘(2↑𝐼)) → (𝐼 ∈ ℕ0 → 0 < 𝑁))
30293ad2ant1 1080 . . . . . . . 8 ((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ (2↑(𝐼 + 1)) ∈ ℤ ∧ 𝑁 < (2↑(𝐼 + 1))) → (𝐼 ∈ ℕ0 → 0 < 𝑁))
318, 30sylbi 207 . . . . . . 7 (𝑁 ∈ ((2↑𝐼)..^(2↑(𝐼 + 1))) → (𝐼 ∈ ℕ0 → 0 < 𝑁))
3231impcom 446 . . . . . 6 ((𝐼 ∈ ℕ0𝑁 ∈ ((2↑𝐼)..^(2↑(𝐼 + 1)))) → 0 < 𝑁)
337, 32elrpd 11813 . . . . 5 ((𝐼 ∈ ℕ0𝑁 ∈ ((2↑𝐼)..^(2↑(𝐼 + 1)))) → 𝑁 ∈ ℝ+)
34 1ne2 11185 . . . . . . 7 1 ≠ 2
3534necomi 2850 . . . . . 6 2 ≠ 1
3635a1i 11 . . . . 5 ((𝐼 ∈ ℕ0𝑁 ∈ ((2↑𝐼)..^(2↑(𝐼 + 1)))) → 2 ≠ 1)
37 relogbcl 24406 . . . . 5 ((2 ∈ ℝ+𝑁 ∈ ℝ+ ∧ 2 ≠ 1) → (2 logb 𝑁) ∈ ℝ)
384, 33, 36, 37syl3anc 1323 . . . 4 ((𝐼 ∈ ℕ0𝑁 ∈ ((2↑𝐼)..^(2↑(𝐼 + 1)))) → (2 logb 𝑁) ∈ ℝ)
3938flcld 12536 . . 3 ((𝐼 ∈ ℕ0𝑁 ∈ ((2↑𝐼)..^(2↑(𝐼 + 1)))) → (⌊‘(2 logb 𝑁)) ∈ ℤ)
40 eluzelz 11641 . . . . . . . 8 (𝑁 ∈ (ℤ‘(2↑𝐼)) → 𝑁 ∈ ℤ)
41 zltlem1 11375 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ (2↑(𝐼 + 1)) ∈ ℤ) → (𝑁 < (2↑(𝐼 + 1)) ↔ 𝑁 ≤ ((2↑(𝐼 + 1)) − 1)))
4240, 41sylan 488 . . . . . . 7 ((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ (2↑(𝐼 + 1)) ∈ ℤ) → (𝑁 < (2↑(𝐼 + 1)) ↔ 𝑁 ≤ ((2↑(𝐼 + 1)) − 1)))
43 2z 11354 . . . . . . . . . . . . 13 2 ∈ ℤ
44 uzid 11646 . . . . . . . . . . . . 13 (2 ∈ ℤ → 2 ∈ (ℤ‘2))
4543, 44ax-mp 5 . . . . . . . . . . . 12 2 ∈ (ℤ‘2)
4645a1i 11 . . . . . . . . . . 11 (((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ (2↑(𝐼 + 1)) ∈ ℤ) ∧ 𝐼 ∈ ℕ0) → 2 ∈ (ℤ‘2))
47 eluzelre 11642 . . . . . . . . . . . . . 14 (𝑁 ∈ (ℤ‘(2↑𝐼)) → 𝑁 ∈ ℝ)
4847adantr 481 . . . . . . . . . . . . 13 ((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ 𝐼 ∈ ℕ0) → 𝑁 ∈ ℝ)
4911, 1, 133jca 1240 . . . . . . . . . . . . . . . . . . . . 21 (𝐼 ∈ ℕ0 → (2 ∈ ℝ ∧ 𝐼 ∈ ℤ ∧ 0 < 2))
50493ad2ant3 1082 . . . . . . . . . . . . . . . . . . . 20 (((2↑𝐼) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℕ0) → (2 ∈ ℝ ∧ 𝐼 ∈ ℤ ∧ 0 < 2))
5150, 14syl 17 . . . . . . . . . . . . . . . . . . 19 (((2↑𝐼) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℕ0) → 0 < (2↑𝐼))
52 0red 9986 . . . . . . . . . . . . . . . . . . . 20 (((2↑𝐼) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℕ0) → 0 ∈ ℝ)
53183ad2ant1 1080 . . . . . . . . . . . . . . . . . . . 20 (((2↑𝐼) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℕ0) → (2↑𝐼) ∈ ℝ)
54213ad2ant2 1081 . . . . . . . . . . . . . . . . . . . 20 (((2↑𝐼) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℕ0) → 𝑁 ∈ ℝ)
5552, 53, 54, 23syl3anc 1323 . . . . . . . . . . . . . . . . . . 19 (((2↑𝐼) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℕ0) → ((0 < (2↑𝐼) ∧ (2↑𝐼) ≤ 𝑁) → 0 < 𝑁))
5651, 55mpand 710 . . . . . . . . . . . . . . . . . 18 (((2↑𝐼) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℕ0) → ((2↑𝐼) ≤ 𝑁 → 0 < 𝑁))
57563exp 1261 . . . . . . . . . . . . . . . . 17 ((2↑𝐼) ∈ ℤ → (𝑁 ∈ ℤ → (𝐼 ∈ ℕ0 → ((2↑𝐼) ≤ 𝑁 → 0 < 𝑁))))
5857com34 91 . . . . . . . . . . . . . . . 16 ((2↑𝐼) ∈ ℤ → (𝑁 ∈ ℤ → ((2↑𝐼) ≤ 𝑁 → (𝐼 ∈ ℕ0 → 0 < 𝑁))))
59583imp 1254 . . . . . . . . . . . . . . 15 (((2↑𝐼) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (2↑𝐼) ≤ 𝑁) → (𝐼 ∈ ℕ0 → 0 < 𝑁))
609, 59sylbi 207 . . . . . . . . . . . . . 14 (𝑁 ∈ (ℤ‘(2↑𝐼)) → (𝐼 ∈ ℕ0 → 0 < 𝑁))
6160imp 445 . . . . . . . . . . . . 13 ((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ 𝐼 ∈ ℕ0) → 0 < 𝑁)
6248, 61elrpd 11813 . . . . . . . . . . . 12 ((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ 𝐼 ∈ ℕ0) → 𝑁 ∈ ℝ+)
6362adantlr 750 . . . . . . . . . . 11 (((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ (2↑(𝐼 + 1)) ∈ ℤ) ∧ 𝐼 ∈ ℕ0) → 𝑁 ∈ ℝ+)
6410a1i 11 . . . . . . . . . . . . . 14 (((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ (2↑(𝐼 + 1)) ∈ ℤ) ∧ 𝐼 ∈ ℕ0) → 2 ∈ ℝ)
65 peano2nn0 11278 . . . . . . . . . . . . . . 15 (𝐼 ∈ ℕ0 → (𝐼 + 1) ∈ ℕ0)
6665adantl 482 . . . . . . . . . . . . . 14 (((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ (2↑(𝐼 + 1)) ∈ ℤ) ∧ 𝐼 ∈ ℕ0) → (𝐼 + 1) ∈ ℕ0)
6764, 66reexpcld 12962 . . . . . . . . . . . . 13 (((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ (2↑(𝐼 + 1)) ∈ ℤ) ∧ 𝐼 ∈ ℕ0) → (2↑(𝐼 + 1)) ∈ ℝ)
68 peano2rem 10293 . . . . . . . . . . . . 13 ((2↑(𝐼 + 1)) ∈ ℝ → ((2↑(𝐼 + 1)) − 1) ∈ ℝ)
6967, 68syl 17 . . . . . . . . . . . 12 (((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ (2↑(𝐼 + 1)) ∈ ℤ) ∧ 𝐼 ∈ ℕ0) → ((2↑(𝐼 + 1)) − 1) ∈ ℝ)
70 nn0p1nn 11277 . . . . . . . . . . . . . . . 16 (𝐼 ∈ ℕ0 → (𝐼 + 1) ∈ ℕ)
71 1lt2 11139 . . . . . . . . . . . . . . . . 17 1 < 2
7271a1i 11 . . . . . . . . . . . . . . . 16 (𝐼 ∈ ℕ0 → 1 < 2)
7311, 70, 723jca 1240 . . . . . . . . . . . . . . 15 (𝐼 ∈ ℕ0 → (2 ∈ ℝ ∧ (𝐼 + 1) ∈ ℕ ∧ 1 < 2))
7473adantl 482 . . . . . . . . . . . . . 14 (((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ (2↑(𝐼 + 1)) ∈ ℤ) ∧ 𝐼 ∈ ℕ0) → (2 ∈ ℝ ∧ (𝐼 + 1) ∈ ℕ ∧ 1 < 2))
75 expgt1 12835 . . . . . . . . . . . . . 14 ((2 ∈ ℝ ∧ (𝐼 + 1) ∈ ℕ ∧ 1 < 2) → 1 < (2↑(𝐼 + 1)))
7674, 75syl 17 . . . . . . . . . . . . 13 (((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ (2↑(𝐼 + 1)) ∈ ℤ) ∧ 𝐼 ∈ ℕ0) → 1 < (2↑(𝐼 + 1)))
77 1red 10000 . . . . . . . . . . . . . 14 (((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ (2↑(𝐼 + 1)) ∈ ℤ) ∧ 𝐼 ∈ ℕ0) → 1 ∈ ℝ)
78 zre 11326 . . . . . . . . . . . . . . 15 ((2↑(𝐼 + 1)) ∈ ℤ → (2↑(𝐼 + 1)) ∈ ℝ)
7978ad2antlr 762 . . . . . . . . . . . . . 14 (((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ (2↑(𝐼 + 1)) ∈ ℤ) ∧ 𝐼 ∈ ℕ0) → (2↑(𝐼 + 1)) ∈ ℝ)
8077, 79posdifd 10559 . . . . . . . . . . . . 13 (((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ (2↑(𝐼 + 1)) ∈ ℤ) ∧ 𝐼 ∈ ℕ0) → (1 < (2↑(𝐼 + 1)) ↔ 0 < ((2↑(𝐼 + 1)) − 1)))
8176, 80mpbid 222 . . . . . . . . . . . 12 (((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ (2↑(𝐼 + 1)) ∈ ℤ) ∧ 𝐼 ∈ ℕ0) → 0 < ((2↑(𝐼 + 1)) − 1))
8269, 81elrpd 11813 . . . . . . . . . . 11 (((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ (2↑(𝐼 + 1)) ∈ ℤ) ∧ 𝐼 ∈ ℕ0) → ((2↑(𝐼 + 1)) − 1) ∈ ℝ+)
83 logbleb 24416 . . . . . . . . . . 11 ((2 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℝ+ ∧ ((2↑(𝐼 + 1)) − 1) ∈ ℝ+) → (𝑁 ≤ ((2↑(𝐼 + 1)) − 1) ↔ (2 logb 𝑁) ≤ (2 logb ((2↑(𝐼 + 1)) − 1))))
8446, 63, 82, 83syl3anc 1323 . . . . . . . . . 10 (((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ (2↑(𝐼 + 1)) ∈ ℤ) ∧ 𝐼 ∈ ℕ0) → (𝑁 ≤ ((2↑(𝐼 + 1)) − 1) ↔ (2 logb 𝑁) ≤ (2 logb ((2↑(𝐼 + 1)) − 1))))
853a1i 11 . . . . . . . . . . . . . . 15 (((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ (2↑(𝐼 + 1)) ∈ ℤ) ∧ 𝐼 ∈ ℕ0) → 2 ∈ ℝ+)
8647adantr 481 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ (2↑(𝐼 + 1)) ∈ ℤ) → 𝑁 ∈ ℝ)
8786adantr 481 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ (2↑(𝐼 + 1)) ∈ ℤ) ∧ 𝐼 ∈ ℕ0) → 𝑁 ∈ ℝ)
8861adantlr 750 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ (2↑(𝐼 + 1)) ∈ ℤ) ∧ 𝐼 ∈ ℕ0) → 0 < 𝑁)
8987, 88elrpd 11813 . . . . . . . . . . . . . . 15 (((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ (2↑(𝐼 + 1)) ∈ ℤ) ∧ 𝐼 ∈ ℕ0) → 𝑁 ∈ ℝ+)
9035a1i 11 . . . . . . . . . . . . . . 15 (((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ (2↑(𝐼 + 1)) ∈ ℤ) ∧ 𝐼 ∈ ℕ0) → 2 ≠ 1)
9185, 89, 90, 37syl3anc 1323 . . . . . . . . . . . . . 14 (((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ (2↑(𝐼 + 1)) ∈ ℤ) ∧ 𝐼 ∈ ℕ0) → (2 logb 𝑁) ∈ ℝ)
9291adantr 481 . . . . . . . . . . . . 13 ((((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ (2↑(𝐼 + 1)) ∈ ℤ) ∧ 𝐼 ∈ ℕ0) ∧ (2 logb 𝑁) ≤ (2 logb ((2↑(𝐼 + 1)) − 1))) → (2 logb 𝑁) ∈ ℝ)
9345a1i 11 . . . . . . . . . . . . . . . . 17 (𝐼 ∈ ℕ0 → 2 ∈ (ℤ‘2))
9411, 65reexpcld 12962 . . . . . . . . . . . . . . . . . . 19 (𝐼 ∈ ℕ0 → (2↑(𝐼 + 1)) ∈ ℝ)
9594, 68syl 17 . . . . . . . . . . . . . . . . . 18 (𝐼 ∈ ℕ0 → ((2↑(𝐼 + 1)) − 1) ∈ ℝ)
9611, 70, 72, 75syl3anc 1323 . . . . . . . . . . . . . . . . . . 19 (𝐼 ∈ ℕ0 → 1 < (2↑(𝐼 + 1)))
97 1red 10000 . . . . . . . . . . . . . . . . . . . 20 (𝐼 ∈ ℕ0 → 1 ∈ ℝ)
9897, 94posdifd 10559 . . . . . . . . . . . . . . . . . . 19 (𝐼 ∈ ℕ0 → (1 < (2↑(𝐼 + 1)) ↔ 0 < ((2↑(𝐼 + 1)) − 1)))
9996, 98mpbid 222 . . . . . . . . . . . . . . . . . 18 (𝐼 ∈ ℕ0 → 0 < ((2↑(𝐼 + 1)) − 1))
10095, 99elrpd 11813 . . . . . . . . . . . . . . . . 17 (𝐼 ∈ ℕ0 → ((2↑(𝐼 + 1)) − 1) ∈ ℝ+)
10193, 100jca 554 . . . . . . . . . . . . . . . 16 (𝐼 ∈ ℕ0 → (2 ∈ (ℤ‘2) ∧ ((2↑(𝐼 + 1)) − 1) ∈ ℝ+))
102101adantl 482 . . . . . . . . . . . . . . 15 (((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ (2↑(𝐼 + 1)) ∈ ℤ) ∧ 𝐼 ∈ ℕ0) → (2 ∈ (ℤ‘2) ∧ ((2↑(𝐼 + 1)) − 1) ∈ ℝ+))
103 relogbzcl 24407 . . . . . . . . . . . . . . 15 ((2 ∈ (ℤ‘2) ∧ ((2↑(𝐼 + 1)) − 1) ∈ ℝ+) → (2 logb ((2↑(𝐼 + 1)) − 1)) ∈ ℝ)
104102, 103syl 17 . . . . . . . . . . . . . 14 (((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ (2↑(𝐼 + 1)) ∈ ℤ) ∧ 𝐼 ∈ ℕ0) → (2 logb ((2↑(𝐼 + 1)) − 1)) ∈ ℝ)
105104adantr 481 . . . . . . . . . . . . 13 ((((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ (2↑(𝐼 + 1)) ∈ ℤ) ∧ 𝐼 ∈ ℕ0) ∧ (2 logb 𝑁) ≤ (2 logb ((2↑(𝐼 + 1)) − 1))) → (2 logb ((2↑(𝐼 + 1)) − 1)) ∈ ℝ)
106 simpr 477 . . . . . . . . . . . . 13 ((((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ (2↑(𝐼 + 1)) ∈ ℤ) ∧ 𝐼 ∈ ℕ0) ∧ (2 logb 𝑁) ≤ (2 logb ((2↑(𝐼 + 1)) − 1))) → (2 logb 𝑁) ≤ (2 logb ((2↑(𝐼 + 1)) − 1)))
107 flwordi 12550 . . . . . . . . . . . . 13 (((2 logb 𝑁) ∈ ℝ ∧ (2 logb ((2↑(𝐼 + 1)) − 1)) ∈ ℝ ∧ (2 logb 𝑁) ≤ (2 logb ((2↑(𝐼 + 1)) − 1))) → (⌊‘(2 logb 𝑁)) ≤ (⌊‘(2 logb ((2↑(𝐼 + 1)) − 1))))
10892, 105, 106, 107syl3anc 1323 . . . . . . . . . . . 12 ((((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ (2↑(𝐼 + 1)) ∈ ℤ) ∧ 𝐼 ∈ ℕ0) ∧ (2 logb 𝑁) ≤ (2 logb ((2↑(𝐼 + 1)) − 1))) → (⌊‘(2 logb 𝑁)) ≤ (⌊‘(2 logb ((2↑(𝐼 + 1)) − 1))))
109108ex 450 . . . . . . . . . . 11 (((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ (2↑(𝐼 + 1)) ∈ ℤ) ∧ 𝐼 ∈ ℕ0) → ((2 logb 𝑁) ≤ (2 logb ((2↑(𝐼 + 1)) − 1)) → (⌊‘(2 logb 𝑁)) ≤ (⌊‘(2 logb ((2↑(𝐼 + 1)) − 1)))))
11070adantl 482 . . . . . . . . . . . . . 14 (((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ (2↑(𝐼 + 1)) ∈ ℤ) ∧ 𝐼 ∈ ℕ0) → (𝐼 + 1) ∈ ℕ)
111 logbpw2m1 41627 . . . . . . . . . . . . . 14 ((𝐼 + 1) ∈ ℕ → (⌊‘(2 logb ((2↑(𝐼 + 1)) − 1))) = ((𝐼 + 1) − 1))
112110, 111syl 17 . . . . . . . . . . . . 13 (((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ (2↑(𝐼 + 1)) ∈ ℤ) ∧ 𝐼 ∈ ℕ0) → (⌊‘(2 logb ((2↑(𝐼 + 1)) − 1))) = ((𝐼 + 1) − 1))
113 nn0cn 11247 . . . . . . . . . . . . . . 15 (𝐼 ∈ ℕ0𝐼 ∈ ℂ)
114 pncan1 10399 . . . . . . . . . . . . . . 15 (𝐼 ∈ ℂ → ((𝐼 + 1) − 1) = 𝐼)
115113, 114syl 17 . . . . . . . . . . . . . 14 (𝐼 ∈ ℕ0 → ((𝐼 + 1) − 1) = 𝐼)
116115adantl 482 . . . . . . . . . . . . 13 (((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ (2↑(𝐼 + 1)) ∈ ℤ) ∧ 𝐼 ∈ ℕ0) → ((𝐼 + 1) − 1) = 𝐼)
117112, 116eqtrd 2660 . . . . . . . . . . . 12 (((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ (2↑(𝐼 + 1)) ∈ ℤ) ∧ 𝐼 ∈ ℕ0) → (⌊‘(2 logb ((2↑(𝐼 + 1)) − 1))) = 𝐼)
118117breq2d 4630 . . . . . . . . . . 11 (((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ (2↑(𝐼 + 1)) ∈ ℤ) ∧ 𝐼 ∈ ℕ0) → ((⌊‘(2 logb 𝑁)) ≤ (⌊‘(2 logb ((2↑(𝐼 + 1)) − 1))) ↔ (⌊‘(2 logb 𝑁)) ≤ 𝐼))
119109, 118sylibd 229 . . . . . . . . . 10 (((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ (2↑(𝐼 + 1)) ∈ ℤ) ∧ 𝐼 ∈ ℕ0) → ((2 logb 𝑁) ≤ (2 logb ((2↑(𝐼 + 1)) − 1)) → (⌊‘(2 logb 𝑁)) ≤ 𝐼))
12084, 119sylbid 230 . . . . . . . . 9 (((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ (2↑(𝐼 + 1)) ∈ ℤ) ∧ 𝐼 ∈ ℕ0) → (𝑁 ≤ ((2↑(𝐼 + 1)) − 1) → (⌊‘(2 logb 𝑁)) ≤ 𝐼))
121120ex 450 . . . . . . . 8 ((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ (2↑(𝐼 + 1)) ∈ ℤ) → (𝐼 ∈ ℕ0 → (𝑁 ≤ ((2↑(𝐼 + 1)) − 1) → (⌊‘(2 logb 𝑁)) ≤ 𝐼)))
122121com23 86 . . . . . . 7 ((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ (2↑(𝐼 + 1)) ∈ ℤ) → (𝑁 ≤ ((2↑(𝐼 + 1)) − 1) → (𝐼 ∈ ℕ0 → (⌊‘(2 logb 𝑁)) ≤ 𝐼)))
12342, 122sylbid 230 . . . . . 6 ((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ (2↑(𝐼 + 1)) ∈ ℤ) → (𝑁 < (2↑(𝐼 + 1)) → (𝐼 ∈ ℕ0 → (⌊‘(2 logb 𝑁)) ≤ 𝐼)))
1241233impia 1258 . . . . 5 ((𝑁 ∈ (ℤ‘(2↑𝐼)) ∧ (2↑(𝐼 + 1)) ∈ ℤ ∧ 𝑁 < (2↑(𝐼 + 1))) → (𝐼 ∈ ℕ0 → (⌊‘(2 logb 𝑁)) ≤ 𝐼))
1258, 124sylbi 207 . . . 4 (𝑁 ∈ ((2↑𝐼)..^(2↑(𝐼 + 1))) → (𝐼 ∈ ℕ0 → (⌊‘(2 logb 𝑁)) ≤ 𝐼))
126125impcom 446 . . 3 ((𝐼 ∈ ℕ0𝑁 ∈ ((2↑𝐼)..^(2↑(𝐼 + 1)))) → (⌊‘(2 logb 𝑁)) ≤ 𝐼)
127 nn0re 11246 . . . . . . . 8 (𝐼 ∈ ℕ0𝐼 ∈ ℝ)
128 nn0ge0 11263 . . . . . . . 8 (𝐼 ∈ ℕ0 → 0 ≤ 𝐼)
129 flge0nn0 12558 . . . . . . . 8 ((𝐼 ∈ ℝ ∧ 0 ≤ 𝐼) → (⌊‘𝐼) ∈ ℕ0)
130127, 128, 129syl2anc 692 . . . . . . 7 (𝐼 ∈ ℕ0 → (⌊‘𝐼) ∈ ℕ0)
131130nn0red 11297 . . . . . 6 (𝐼 ∈ ℕ0 → (⌊‘𝐼) ∈ ℝ)
132131adantr 481 . . . . 5 ((𝐼 ∈ ℕ0𝑁 ∈ ((2↑𝐼)..^(2↑(𝐼 + 1)))) → (⌊‘𝐼) ∈ ℝ)
133127adantr 481 . . . . 5 ((𝐼 ∈ ℕ0𝑁 ∈ ((2↑𝐼)..^(2↑(𝐼 + 1)))) → 𝐼 ∈ ℝ)
134 flle 12537 . . . . . . 7 (𝐼 ∈ ℝ → (⌊‘𝐼) ≤ 𝐼)
135127, 134syl 17 . . . . . 6 (𝐼 ∈ ℕ0 → (⌊‘𝐼) ≤ 𝐼)
136135adantr 481 . . . . 5 ((𝐼 ∈ ℕ0𝑁 ∈ ((2↑𝐼)..^(2↑(𝐼 + 1)))) → (⌊‘𝐼) ≤ 𝐼)
1373a1i 11 . . . . . . . 8 (𝐼 ∈ ℕ0 → 2 ∈ ℝ+)
138137, 1rpexpcld 12969 . . . . . . . 8 (𝐼 ∈ ℕ0 → (2↑𝐼) ∈ ℝ+)
13935a1i 11 . . . . . . . 8 (𝐼 ∈ ℕ0 → 2 ≠ 1)
140 relogbcl 24406 . . . . . . . 8 ((2 ∈ ℝ+ ∧ (2↑𝐼) ∈ ℝ+ ∧ 2 ≠ 1) → (2 logb (2↑𝐼)) ∈ ℝ)
141137, 138, 139, 140syl3anc 1323 . . . . . . 7 (𝐼 ∈ ℕ0 → (2 logb (2↑𝐼)) ∈ ℝ)
142141adantr 481 . . . . . 6 ((𝐼 ∈ ℕ0𝑁 ∈ ((2↑𝐼)..^(2↑(𝐼 + 1)))) → (2 logb (2↑𝐼)) ∈ ℝ)
143127leidd 10539 . . . . . . . 8 (𝐼 ∈ ℕ0𝐼𝐼)
144 nnlogbexp 24414 . . . . . . . . 9 ((2 ∈ (ℤ‘2) ∧ 𝐼 ∈ ℤ) → (2 logb (2↑𝐼)) = 𝐼)
14593, 1, 144syl2anc 692 . . . . . . . 8 (𝐼 ∈ ℕ0 → (2 logb (2↑𝐼)) = 𝐼)
146143, 145breqtrrd 4646 . . . . . . 7 (𝐼 ∈ ℕ0𝐼 ≤ (2 logb (2↑𝐼)))
147146adantr 481 . . . . . 6 ((𝐼 ∈ ℕ0𝑁 ∈ ((2↑𝐼)..^(2↑(𝐼 + 1)))) → 𝐼 ≤ (2 logb (2↑𝐼)))
148 elfzole1 12416 . . . . . . . 8 (𝑁 ∈ ((2↑𝐼)..^(2↑(𝐼 + 1))) → (2↑𝐼) ≤ 𝑁)
149148adantl 482 . . . . . . 7 ((𝐼 ∈ ℕ0𝑁 ∈ ((2↑𝐼)..^(2↑(𝐼 + 1)))) → (2↑𝐼) ≤ 𝑁)
15045a1i 11 . . . . . . . 8 ((𝐼 ∈ ℕ0𝑁 ∈ ((2↑𝐼)..^(2↑(𝐼 + 1)))) → 2 ∈ (ℤ‘2))
151138adantr 481 . . . . . . . 8 ((𝐼 ∈ ℕ0𝑁 ∈ ((2↑𝐼)..^(2↑(𝐼 + 1)))) → (2↑𝐼) ∈ ℝ+)
152 logbleb 24416 . . . . . . . 8 ((2 ∈ (ℤ‘2) ∧ (2↑𝐼) ∈ ℝ+𝑁 ∈ ℝ+) → ((2↑𝐼) ≤ 𝑁 ↔ (2 logb (2↑𝐼)) ≤ (2 logb 𝑁)))
153150, 151, 33, 152syl3anc 1323 . . . . . . 7 ((𝐼 ∈ ℕ0𝑁 ∈ ((2↑𝐼)..^(2↑(𝐼 + 1)))) → ((2↑𝐼) ≤ 𝑁 ↔ (2 logb (2↑𝐼)) ≤ (2 logb 𝑁)))
154149, 153mpbid 222 . . . . . 6 ((𝐼 ∈ ℕ0𝑁 ∈ ((2↑𝐼)..^(2↑(𝐼 + 1)))) → (2 logb (2↑𝐼)) ≤ (2 logb 𝑁))
155133, 142, 38, 147, 154letrd 10139 . . . . 5 ((𝐼 ∈ ℕ0𝑁 ∈ ((2↑𝐼)..^(2↑(𝐼 + 1)))) → 𝐼 ≤ (2 logb 𝑁))
156132, 133, 38, 136, 155letrd 10139 . . . 4 ((𝐼 ∈ ℕ0𝑁 ∈ ((2↑𝐼)..^(2↑(𝐼 + 1)))) → (⌊‘𝐼) ≤ (2 logb 𝑁))
157 flflp1 12545 . . . . 5 ((𝐼 ∈ ℝ ∧ (2 logb 𝑁) ∈ ℝ) → ((⌊‘𝐼) ≤ (2 logb 𝑁) ↔ 𝐼 < ((⌊‘(2 logb 𝑁)) + 1)))
158133, 38, 157syl2anc 692 . . . 4 ((𝐼 ∈ ℕ0𝑁 ∈ ((2↑𝐼)..^(2↑(𝐼 + 1)))) → ((⌊‘𝐼) ≤ (2 logb 𝑁) ↔ 𝐼 < ((⌊‘(2 logb 𝑁)) + 1)))
159156, 158mpbid 222 . . 3 ((𝐼 ∈ ℕ0𝑁 ∈ ((2↑𝐼)..^(2↑(𝐼 + 1)))) → 𝐼 < ((⌊‘(2 logb 𝑁)) + 1))
160 zgeltp1eq 40603 . . . 4 ((𝐼 ∈ ℤ ∧ (⌊‘(2 logb 𝑁)) ∈ ℤ) → (((⌊‘(2 logb 𝑁)) ≤ 𝐼𝐼 < ((⌊‘(2 logb 𝑁)) + 1)) → 𝐼 = (⌊‘(2 logb 𝑁))))
161160imp 445 . . 3 (((𝐼 ∈ ℤ ∧ (⌊‘(2 logb 𝑁)) ∈ ℤ) ∧ ((⌊‘(2 logb 𝑁)) ≤ 𝐼𝐼 < ((⌊‘(2 logb 𝑁)) + 1))) → 𝐼 = (⌊‘(2 logb 𝑁)))
1622, 39, 126, 159, 161syl22anc 1324 . 2 ((𝐼 ∈ ℕ0𝑁 ∈ ((2↑𝐼)..^(2↑(𝐼 + 1)))) → 𝐼 = (⌊‘(2 logb 𝑁)))
163162eqcomd 2632 1 ((𝐼 ∈ ℕ0𝑁 ∈ ((2↑𝐼)..^(2↑(𝐼 + 1)))) → (⌊‘(2 logb 𝑁)) = 𝐼)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1036   = wceq 1480  wcel 1992  wne 2796   class class class wbr 4618  cfv 5850  (class class class)co 6605  cc 9879  cr 9880  0cc0 9881  1c1 9882   + caddc 9884   < clt 10019  cle 10020  cmin 10211  cn 10965  2c2 11015  0cn0 11237  cz 11322  cuz 11631  +crp 11776  ..^cfzo 12403  cfl 12528  cexp 12797   logb clogb 24397
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-8 1994  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6903  ax-inf2 8483  ax-cnex 9937  ax-resscn 9938  ax-1cn 9939  ax-icn 9940  ax-addcl 9941  ax-addrcl 9942  ax-mulcl 9943  ax-mulrcl 9944  ax-mulcom 9945  ax-addass 9946  ax-mulass 9947  ax-distr 9948  ax-i2m1 9949  ax-1ne0 9950  ax-1rid 9951  ax-rnegex 9952  ax-rrecex 9953  ax-cnre 9954  ax-pre-lttri 9955  ax-pre-lttrn 9956  ax-pre-ltadd 9957  ax-pre-mulgt0 9958  ax-pre-sup 9959  ax-addf 9960  ax-mulf 9961
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ne 2797  df-nel 2900  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3193  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-iin 4493  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-se 5039  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5642  df-ord 5688  df-on 5689  df-lim 5690  df-suc 5691  df-iota 5813  df-fun 5852  df-fn 5853  df-f 5854  df-f1 5855  df-fo 5856  df-f1o 5857  df-fv 5858  df-isom 5859  df-riota 6566  df-ov 6608  df-oprab 6609  df-mpt2 6610  df-of 6851  df-om 7014  df-1st 7116  df-2nd 7117  df-supp 7242  df-wrecs 7353  df-recs 7414  df-rdg 7452  df-1o 7506  df-2o 7507  df-oadd 7510  df-er 7688  df-map 7805  df-pm 7806  df-ixp 7854  df-en 7901  df-dom 7902  df-sdom 7903  df-fin 7904  df-fsupp 8221  df-fi 8262  df-sup 8293  df-inf 8294  df-oi 8360  df-card 8710  df-cda 8935  df-pnf 10021  df-mnf 10022  df-xr 10023  df-ltxr 10024  df-le 10025  df-sub 10213  df-neg 10214  df-div 10630  df-nn 10966  df-2 11024  df-3 11025  df-4 11026  df-5 11027  df-6 11028  df-7 11029  df-8 11030  df-9 11031  df-n0 11238  df-z 11323  df-dec 11438  df-uz 11632  df-q 11733  df-rp 11777  df-xneg 11890  df-xadd 11891  df-xmul 11892  df-ioo 12118  df-ioc 12119  df-ico 12120  df-icc 12121  df-fz 12266  df-fzo 12404  df-fl 12530  df-mod 12606  df-seq 12739  df-exp 12798  df-fac 12998  df-bc 13027  df-hash 13055  df-shft 13736  df-cj 13768  df-re 13769  df-im 13770  df-sqrt 13904  df-abs 13905  df-limsup 14131  df-clim 14148  df-rlim 14149  df-sum 14346  df-ef 14718  df-sin 14720  df-cos 14721  df-pi 14723  df-struct 15778  df-ndx 15779  df-slot 15780  df-base 15781  df-sets 15782  df-ress 15783  df-plusg 15870  df-mulr 15871  df-starv 15872  df-sca 15873  df-vsca 15874  df-ip 15875  df-tset 15876  df-ple 15877  df-ds 15880  df-unif 15881  df-hom 15882  df-cco 15883  df-rest 15999  df-topn 16000  df-0g 16018  df-gsum 16019  df-topgen 16020  df-pt 16021  df-prds 16024  df-xrs 16078  df-qtop 16083  df-imas 16084  df-xps 16086  df-mre 16162  df-mrc 16163  df-acs 16165  df-mgm 17158  df-sgrp 17200  df-mnd 17211  df-submnd 17252  df-mulg 17457  df-cntz 17666  df-cmn 18111  df-psmet 19652  df-xmet 19653  df-met 19654  df-bl 19655  df-mopn 19656  df-fbas 19657  df-fg 19658  df-cnfld 19661  df-top 20616  df-bases 20617  df-topon 20618  df-topsp 20619  df-cld 20728  df-ntr 20729  df-cls 20730  df-nei 20807  df-lp 20845  df-perf 20846  df-cn 20936  df-cnp 20937  df-haus 21024  df-tx 21270  df-hmeo 21463  df-fil 21555  df-fm 21647  df-flim 21648  df-flf 21649  df-xms 22030  df-ms 22031  df-tms 22032  df-cncf 22584  df-limc 23531  df-dv 23532  df-log 24202  df-cxp 24203  df-logb 24398
This theorem is referenced by:  nnolog2flm1  41650
  Copyright terms: Public domain W3C validator