ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lt2mulnq Unicode version

Theorem lt2mulnq 7600
Description: Ordering property of multiplication for positive fractions. (Contributed by Jim Kingdon, 18-Jul-2021.)
Assertion
Ref Expression
lt2mulnq  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  ( C  e.  Q.  /\  D  e.  Q. )
)  ->  ( ( A  <Q  B  /\  C  <Q  D )  ->  ( A  .Q  C )  <Q 
( B  .Q  D
) ) )

Proof of Theorem lt2mulnq
StepHypRef Expression
1 ltmnqg 7596 . . . . . 6  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  ( A  <Q  B  <->  ( C  .Q  A )  <Q  ( C  .Q  B ) ) )
213expa 1227 . . . . 5  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  C  e.  Q. )  ->  ( A  <Q  B  <-> 
( C  .Q  A
)  <Q  ( C  .Q  B ) ) )
32adantrr 479 . . . 4  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  ( C  e.  Q.  /\  D  e.  Q. )
)  ->  ( A  <Q  B  <->  ( C  .Q  A )  <Q  ( C  .Q  B ) ) )
4 mulcomnqg 7578 . . . . . . 7  |-  ( ( C  e.  Q.  /\  A  e.  Q. )  ->  ( C  .Q  A
)  =  ( A  .Q  C ) )
54ancoms 268 . . . . . 6  |-  ( ( A  e.  Q.  /\  C  e.  Q. )  ->  ( C  .Q  A
)  =  ( A  .Q  C ) )
65ad2ant2r 509 . . . . 5  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  ( C  e.  Q.  /\  D  e.  Q. )
)  ->  ( C  .Q  A )  =  ( A  .Q  C ) )
7 mulcomnqg 7578 . . . . . . 7  |-  ( ( C  e.  Q.  /\  B  e.  Q. )  ->  ( C  .Q  B
)  =  ( B  .Q  C ) )
87ancoms 268 . . . . . 6  |-  ( ( B  e.  Q.  /\  C  e.  Q. )  ->  ( C  .Q  B
)  =  ( B  .Q  C ) )
98ad2ant2lr 510 . . . . 5  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  ( C  e.  Q.  /\  D  e.  Q. )
)  ->  ( C  .Q  B )  =  ( B  .Q  C ) )
106, 9breq12d 4096 . . . 4  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  ( C  e.  Q.  /\  D  e.  Q. )
)  ->  ( ( C  .Q  A )  <Q 
( C  .Q  B
)  <->  ( A  .Q  C )  <Q  ( B  .Q  C ) ) )
113, 10bitrd 188 . . 3  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  ( C  e.  Q.  /\  D  e.  Q. )
)  ->  ( A  <Q  B  <->  ( A  .Q  C )  <Q  ( B  .Q  C ) ) )
12 ltmnqg 7596 . . . . . 6  |-  ( ( C  e.  Q.  /\  D  e.  Q.  /\  B  e.  Q. )  ->  ( C  <Q  D  <->  ( B  .Q  C )  <Q  ( B  .Q  D ) ) )
13123expa 1227 . . . . 5  |-  ( ( ( C  e.  Q.  /\  D  e.  Q. )  /\  B  e.  Q. )  ->  ( C  <Q  D  <-> 
( B  .Q  C
)  <Q  ( B  .Q  D ) ) )
1413ancoms 268 . . . 4  |-  ( ( B  e.  Q.  /\  ( C  e.  Q.  /\  D  e.  Q. )
)  ->  ( C  <Q  D  <->  ( B  .Q  C )  <Q  ( B  .Q  D ) ) )
1514adantll 476 . . 3  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  ( C  e.  Q.  /\  D  e.  Q. )
)  ->  ( C  <Q  D  <->  ( B  .Q  C )  <Q  ( B  .Q  D ) ) )
1611, 15anbi12d 473 . 2  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  ( C  e.  Q.  /\  D  e.  Q. )
)  ->  ( ( A  <Q  B  /\  C  <Q  D )  <->  ( ( A  .Q  C )  <Q 
( B  .Q  C
)  /\  ( B  .Q  C )  <Q  ( B  .Q  D ) ) ) )
17 ltsonq 7593 . . 3  |-  <Q  Or  Q.
18 ltrelnq 7560 . . 3  |-  <Q  C_  ( Q.  X.  Q. )
1917, 18sotri 5124 . 2  |-  ( ( ( A  .Q  C
)  <Q  ( B  .Q  C )  /\  ( B  .Q  C )  <Q 
( B  .Q  D
) )  ->  ( A  .Q  C )  <Q 
( B  .Q  D
) )
2016, 19biimtrdi 163 1  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  ( C  e.  Q.  /\  D  e.  Q. )
)  ->  ( ( A  <Q  B  /\  C  <Q  D )  ->  ( A  .Q  C )  <Q 
( B  .Q  D
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1395    e. wcel 2200   class class class wbr 4083  (class class class)co 6007   Q.cnq 7475    .Q cmq 7478    <Q cltq 7480
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-eprel 4380  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-ov 6010  df-oprab 6011  df-mpo 6012  df-1st 6292  df-2nd 6293  df-recs 6457  df-irdg 6522  df-oadd 6572  df-omul 6573  df-er 6688  df-ec 6690  df-qs 6694  df-ni 7499  df-mi 7501  df-lti 7502  df-mpq 7540  df-enq 7542  df-nqqs 7543  df-mqqs 7545  df-ltnqqs 7548
This theorem is referenced by:  mulnqprlemrl  7768  mulnqprlemru  7769
  Copyright terms: Public domain W3C validator