ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lt2mulnq Unicode version

Theorem lt2mulnq 7472
Description: Ordering property of multiplication for positive fractions. (Contributed by Jim Kingdon, 18-Jul-2021.)
Assertion
Ref Expression
lt2mulnq  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  ( C  e.  Q.  /\  D  e.  Q. )
)  ->  ( ( A  <Q  B  /\  C  <Q  D )  ->  ( A  .Q  C )  <Q 
( B  .Q  D
) ) )

Proof of Theorem lt2mulnq
StepHypRef Expression
1 ltmnqg 7468 . . . . . 6  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  ( A  <Q  B  <->  ( C  .Q  A )  <Q  ( C  .Q  B ) ) )
213expa 1205 . . . . 5  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  C  e.  Q. )  ->  ( A  <Q  B  <-> 
( C  .Q  A
)  <Q  ( C  .Q  B ) ) )
32adantrr 479 . . . 4  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  ( C  e.  Q.  /\  D  e.  Q. )
)  ->  ( A  <Q  B  <->  ( C  .Q  A )  <Q  ( C  .Q  B ) ) )
4 mulcomnqg 7450 . . . . . . 7  |-  ( ( C  e.  Q.  /\  A  e.  Q. )  ->  ( C  .Q  A
)  =  ( A  .Q  C ) )
54ancoms 268 . . . . . 6  |-  ( ( A  e.  Q.  /\  C  e.  Q. )  ->  ( C  .Q  A
)  =  ( A  .Q  C ) )
65ad2ant2r 509 . . . . 5  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  ( C  e.  Q.  /\  D  e.  Q. )
)  ->  ( C  .Q  A )  =  ( A  .Q  C ) )
7 mulcomnqg 7450 . . . . . . 7  |-  ( ( C  e.  Q.  /\  B  e.  Q. )  ->  ( C  .Q  B
)  =  ( B  .Q  C ) )
87ancoms 268 . . . . . 6  |-  ( ( B  e.  Q.  /\  C  e.  Q. )  ->  ( C  .Q  B
)  =  ( B  .Q  C ) )
98ad2ant2lr 510 . . . . 5  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  ( C  e.  Q.  /\  D  e.  Q. )
)  ->  ( C  .Q  B )  =  ( B  .Q  C ) )
106, 9breq12d 4046 . . . 4  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  ( C  e.  Q.  /\  D  e.  Q. )
)  ->  ( ( C  .Q  A )  <Q 
( C  .Q  B
)  <->  ( A  .Q  C )  <Q  ( B  .Q  C ) ) )
113, 10bitrd 188 . . 3  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  ( C  e.  Q.  /\  D  e.  Q. )
)  ->  ( A  <Q  B  <->  ( A  .Q  C )  <Q  ( B  .Q  C ) ) )
12 ltmnqg 7468 . . . . . 6  |-  ( ( C  e.  Q.  /\  D  e.  Q.  /\  B  e.  Q. )  ->  ( C  <Q  D  <->  ( B  .Q  C )  <Q  ( B  .Q  D ) ) )
13123expa 1205 . . . . 5  |-  ( ( ( C  e.  Q.  /\  D  e.  Q. )  /\  B  e.  Q. )  ->  ( C  <Q  D  <-> 
( B  .Q  C
)  <Q  ( B  .Q  D ) ) )
1413ancoms 268 . . . 4  |-  ( ( B  e.  Q.  /\  ( C  e.  Q.  /\  D  e.  Q. )
)  ->  ( C  <Q  D  <->  ( B  .Q  C )  <Q  ( B  .Q  D ) ) )
1514adantll 476 . . 3  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  ( C  e.  Q.  /\  D  e.  Q. )
)  ->  ( C  <Q  D  <->  ( B  .Q  C )  <Q  ( B  .Q  D ) ) )
1611, 15anbi12d 473 . 2  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  ( C  e.  Q.  /\  D  e.  Q. )
)  ->  ( ( A  <Q  B  /\  C  <Q  D )  <->  ( ( A  .Q  C )  <Q 
( B  .Q  C
)  /\  ( B  .Q  C )  <Q  ( B  .Q  D ) ) ) )
17 ltsonq 7465 . . 3  |-  <Q  Or  Q.
18 ltrelnq 7432 . . 3  |-  <Q  C_  ( Q.  X.  Q. )
1917, 18sotri 5065 . 2  |-  ( ( ( A  .Q  C
)  <Q  ( B  .Q  C )  /\  ( B  .Q  C )  <Q 
( B  .Q  D
) )  ->  ( A  .Q  C )  <Q 
( B  .Q  D
) )
2016, 19biimtrdi 163 1  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  ( C  e.  Q.  /\  D  e.  Q. )
)  ->  ( ( A  <Q  B  /\  C  <Q  D )  ->  ( A  .Q  C )  <Q 
( B  .Q  D
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2167   class class class wbr 4033  (class class class)co 5922   Q.cnq 7347    .Q cmq 7350    <Q cltq 7352
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-eprel 4324  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-irdg 6428  df-oadd 6478  df-omul 6479  df-er 6592  df-ec 6594  df-qs 6598  df-ni 7371  df-mi 7373  df-lti 7374  df-mpq 7412  df-enq 7414  df-nqqs 7415  df-mqqs 7417  df-ltnqqs 7420
This theorem is referenced by:  mulnqprlemrl  7640  mulnqprlemru  7641
  Copyright terms: Public domain W3C validator