ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lt2mulnq Unicode version

Theorem lt2mulnq 7061
Description: Ordering property of multiplication for positive fractions. (Contributed by Jim Kingdon, 18-Jul-2021.)
Assertion
Ref Expression
lt2mulnq  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  ( C  e.  Q.  /\  D  e.  Q. )
)  ->  ( ( A  <Q  B  /\  C  <Q  D )  ->  ( A  .Q  C )  <Q 
( B  .Q  D
) ) )

Proof of Theorem lt2mulnq
StepHypRef Expression
1 ltmnqg 7057 . . . . . 6  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  ( A  <Q  B  <->  ( C  .Q  A )  <Q  ( C  .Q  B ) ) )
213expa 1146 . . . . 5  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  C  e.  Q. )  ->  ( A  <Q  B  <-> 
( C  .Q  A
)  <Q  ( C  .Q  B ) ) )
32adantrr 464 . . . 4  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  ( C  e.  Q.  /\  D  e.  Q. )
)  ->  ( A  <Q  B  <->  ( C  .Q  A )  <Q  ( C  .Q  B ) ) )
4 mulcomnqg 7039 . . . . . . 7  |-  ( ( C  e.  Q.  /\  A  e.  Q. )  ->  ( C  .Q  A
)  =  ( A  .Q  C ) )
54ancoms 265 . . . . . 6  |-  ( ( A  e.  Q.  /\  C  e.  Q. )  ->  ( C  .Q  A
)  =  ( A  .Q  C ) )
65ad2ant2r 494 . . . . 5  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  ( C  e.  Q.  /\  D  e.  Q. )
)  ->  ( C  .Q  A )  =  ( A  .Q  C ) )
7 mulcomnqg 7039 . . . . . . 7  |-  ( ( C  e.  Q.  /\  B  e.  Q. )  ->  ( C  .Q  B
)  =  ( B  .Q  C ) )
87ancoms 265 . . . . . 6  |-  ( ( B  e.  Q.  /\  C  e.  Q. )  ->  ( C  .Q  B
)  =  ( B  .Q  C ) )
98ad2ant2lr 495 . . . . 5  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  ( C  e.  Q.  /\  D  e.  Q. )
)  ->  ( C  .Q  B )  =  ( B  .Q  C ) )
106, 9breq12d 3880 . . . 4  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  ( C  e.  Q.  /\  D  e.  Q. )
)  ->  ( ( C  .Q  A )  <Q 
( C  .Q  B
)  <->  ( A  .Q  C )  <Q  ( B  .Q  C ) ) )
113, 10bitrd 187 . . 3  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  ( C  e.  Q.  /\  D  e.  Q. )
)  ->  ( A  <Q  B  <->  ( A  .Q  C )  <Q  ( B  .Q  C ) ) )
12 ltmnqg 7057 . . . . . 6  |-  ( ( C  e.  Q.  /\  D  e.  Q.  /\  B  e.  Q. )  ->  ( C  <Q  D  <->  ( B  .Q  C )  <Q  ( B  .Q  D ) ) )
13123expa 1146 . . . . 5  |-  ( ( ( C  e.  Q.  /\  D  e.  Q. )  /\  B  e.  Q. )  ->  ( C  <Q  D  <-> 
( B  .Q  C
)  <Q  ( B  .Q  D ) ) )
1413ancoms 265 . . . 4  |-  ( ( B  e.  Q.  /\  ( C  e.  Q.  /\  D  e.  Q. )
)  ->  ( C  <Q  D  <->  ( B  .Q  C )  <Q  ( B  .Q  D ) ) )
1514adantll 461 . . 3  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  ( C  e.  Q.  /\  D  e.  Q. )
)  ->  ( C  <Q  D  <->  ( B  .Q  C )  <Q  ( B  .Q  D ) ) )
1611, 15anbi12d 458 . 2  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  ( C  e.  Q.  /\  D  e.  Q. )
)  ->  ( ( A  <Q  B  /\  C  <Q  D )  <->  ( ( A  .Q  C )  <Q 
( B  .Q  C
)  /\  ( B  .Q  C )  <Q  ( B  .Q  D ) ) ) )
17 ltsonq 7054 . . 3  |-  <Q  Or  Q.
18 ltrelnq 7021 . . 3  |-  <Q  C_  ( Q.  X.  Q. )
1917, 18sotri 4860 . 2  |-  ( ( ( A  .Q  C
)  <Q  ( B  .Q  C )  /\  ( B  .Q  C )  <Q 
( B  .Q  D
) )  ->  ( A  .Q  C )  <Q 
( B  .Q  D
) )
2016, 19syl6bi 162 1  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  ( C  e.  Q.  /\  D  e.  Q. )
)  ->  ( ( A  <Q  B  /\  C  <Q  D )  ->  ( A  .Q  C )  <Q 
( B  .Q  D
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1296    e. wcel 1445   class class class wbr 3867  (class class class)co 5690   Q.cnq 6936    .Q cmq 6939    <Q cltq 6941
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 582  ax-in2 583  ax-io 668  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-10 1448  ax-11 1449  ax-i12 1450  ax-bndl 1451  ax-4 1452  ax-13 1456  ax-14 1457  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480  ax-ext 2077  ax-coll 3975  ax-sep 3978  ax-nul 3986  ax-pow 4030  ax-pr 4060  ax-un 4284  ax-setind 4381  ax-iinf 4431
This theorem depends on definitions:  df-bi 116  df-dc 784  df-3or 928  df-3an 929  df-tru 1299  df-fal 1302  df-nf 1402  df-sb 1700  df-eu 1958  df-mo 1959  df-clab 2082  df-cleq 2088  df-clel 2091  df-nfc 2224  df-ne 2263  df-ral 2375  df-rex 2376  df-reu 2377  df-rab 2379  df-v 2635  df-sbc 2855  df-csb 2948  df-dif 3015  df-un 3017  df-in 3019  df-ss 3026  df-nul 3303  df-pw 3451  df-sn 3472  df-pr 3473  df-op 3475  df-uni 3676  df-int 3711  df-iun 3754  df-br 3868  df-opab 3922  df-mpt 3923  df-tr 3959  df-eprel 4140  df-id 4144  df-po 4147  df-iso 4148  df-iord 4217  df-on 4219  df-suc 4222  df-iom 4434  df-xp 4473  df-rel 4474  df-cnv 4475  df-co 4476  df-dm 4477  df-rn 4478  df-res 4479  df-ima 4480  df-iota 5014  df-fun 5051  df-fn 5052  df-f 5053  df-f1 5054  df-fo 5055  df-f1o 5056  df-fv 5057  df-ov 5693  df-oprab 5694  df-mpt2 5695  df-1st 5949  df-2nd 5950  df-recs 6108  df-irdg 6173  df-oadd 6223  df-omul 6224  df-er 6332  df-ec 6334  df-qs 6338  df-ni 6960  df-mi 6962  df-lti 6963  df-mpq 7001  df-enq 7003  df-nqqs 7004  df-mqqs 7006  df-ltnqqs 7009
This theorem is referenced by:  mulnqprlemrl  7229  mulnqprlemru  7230
  Copyright terms: Public domain W3C validator