Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > binom | Unicode version |
Description: The binomial theorem: is the sum from to of . Theorem 15-2.8 of [Gleason] p. 296. This part of the proof sets up the induction and does the base case, with the bulk of the work (the induction step) in binomlem 11418. This is Metamath 100 proof #44. (Contributed by NM, 7-Dec-2005.) (Proof shortened by Mario Carneiro, 24-Apr-2014.) |
Ref | Expression |
---|---|
binom |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 5847 | . . . . . 6 | |
2 | oveq2 5847 | . . . . . . 7 | |
3 | oveq1 5846 | . . . . . . . . 9 | |
4 | oveq1 5846 | . . . . . . . . . . 11 | |
5 | 4 | oveq2d 5855 | . . . . . . . . . 10 |
6 | 5 | oveq1d 5854 | . . . . . . . . 9 |
7 | 3, 6 | oveq12d 5857 | . . . . . . . 8 |
8 | 7 | adantr 274 | . . . . . . 7 |
9 | 2, 8 | sumeq12dv 11307 | . . . . . 6 |
10 | 1, 9 | eqeq12d 2179 | . . . . 5 |
11 | 10 | imbi2d 229 | . . . 4 |
12 | oveq2 5847 | . . . . . 6 | |
13 | oveq2 5847 | . . . . . . 7 | |
14 | oveq1 5846 | . . . . . . . . 9 | |
15 | oveq1 5846 | . . . . . . . . . . 11 | |
16 | 15 | oveq2d 5855 | . . . . . . . . . 10 |
17 | 16 | oveq1d 5854 | . . . . . . . . 9 |
18 | 14, 17 | oveq12d 5857 | . . . . . . . 8 |
19 | 18 | adantr 274 | . . . . . . 7 |
20 | 13, 19 | sumeq12dv 11307 | . . . . . 6 |
21 | 12, 20 | eqeq12d 2179 | . . . . 5 |
22 | 21 | imbi2d 229 | . . . 4 |
23 | oveq2 5847 | . . . . . 6 | |
24 | oveq2 5847 | . . . . . . 7 | |
25 | oveq1 5846 | . . . . . . . . 9 | |
26 | oveq1 5846 | . . . . . . . . . . 11 | |
27 | 26 | oveq2d 5855 | . . . . . . . . . 10 |
28 | 27 | oveq1d 5854 | . . . . . . . . 9 |
29 | 25, 28 | oveq12d 5857 | . . . . . . . 8 |
30 | 29 | adantr 274 | . . . . . . 7 |
31 | 24, 30 | sumeq12dv 11307 | . . . . . 6 |
32 | 23, 31 | eqeq12d 2179 | . . . . 5 |
33 | 32 | imbi2d 229 | . . . 4 |
34 | oveq2 5847 | . . . . . 6 | |
35 | oveq2 5847 | . . . . . . 7 | |
36 | oveq1 5846 | . . . . . . . . 9 | |
37 | oveq1 5846 | . . . . . . . . . . 11 | |
38 | 37 | oveq2d 5855 | . . . . . . . . . 10 |
39 | 38 | oveq1d 5854 | . . . . . . . . 9 |
40 | 36, 39 | oveq12d 5857 | . . . . . . . 8 |
41 | 40 | adantr 274 | . . . . . . 7 |
42 | 35, 41 | sumeq12dv 11307 | . . . . . 6 |
43 | 34, 42 | eqeq12d 2179 | . . . . 5 |
44 | 43 | imbi2d 229 | . . . 4 |
45 | exp0 10453 | . . . . . . . . 9 | |
46 | exp0 10453 | . . . . . . . . 9 | |
47 | 45, 46 | oveqan12d 5858 | . . . . . . . 8 |
48 | 1t1e1 9003 | . . . . . . . 8 | |
49 | 47, 48 | eqtrdi 2213 | . . . . . . 7 |
50 | 49 | oveq2d 5855 | . . . . . 6 |
51 | 50, 48 | eqtrdi 2213 | . . . . 5 |
52 | 0z 9196 | . . . . . 6 | |
53 | ax-1cn 7840 | . . . . . . 7 | |
54 | 51, 53 | eqeltrdi 2255 | . . . . . 6 |
55 | oveq2 5847 | . . . . . . . . 9 | |
56 | 0nn0 9123 | . . . . . . . . . 10 | |
57 | bcn0 10662 | . . . . . . . . . 10 | |
58 | 56, 57 | ax-mp 5 | . . . . . . . . 9 |
59 | 55, 58 | eqtrdi 2213 | . . . . . . . 8 |
60 | oveq2 5847 | . . . . . . . . . . 11 | |
61 | 0m0e0 8963 | . . . . . . . . . . 11 | |
62 | 60, 61 | eqtrdi 2213 | . . . . . . . . . 10 |
63 | 62 | oveq2d 5855 | . . . . . . . . 9 |
64 | oveq2 5847 | . . . . . . . . 9 | |
65 | 63, 64 | oveq12d 5857 | . . . . . . . 8 |
66 | 59, 65 | oveq12d 5857 | . . . . . . 7 |
67 | 66 | fsum1 11347 | . . . . . 6 |
68 | 52, 54, 67 | sylancr 411 | . . . . 5 |
69 | addcl 7872 | . . . . . 6 | |
70 | 69 | exp0d 10576 | . . . . 5 |
71 | 51, 68, 70 | 3eqtr4rd 2208 | . . . 4 |
72 | simprl 521 | . . . . . . 7 | |
73 | simprr 522 | . . . . . . 7 | |
74 | simpl 108 | . . . . . . 7 | |
75 | id 19 | . . . . . . 7 | |
76 | 72, 73, 74, 75 | binomlem 11418 | . . . . . 6 |
77 | 76 | exp31 362 | . . . . 5 |
78 | 77 | a2d 26 | . . . 4 |
79 | 11, 22, 33, 44, 71, 78 | nn0ind 9299 | . . 3 |
80 | 79 | impcom 124 | . 2 |
81 | 80 | 3impa 1183 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 w3a 967 wceq 1342 wcel 2135 (class class class)co 5839 cc 7745 cc0 7747 c1 7748 caddc 7750 cmul 7752 cmin 8063 cn0 9108 cz 9185 cfz 9938 cexp 10448 cbc 10654 csu 11288 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1434 ax-7 1435 ax-gen 1436 ax-ie1 1480 ax-ie2 1481 ax-8 1491 ax-10 1492 ax-11 1493 ax-i12 1494 ax-bndl 1496 ax-4 1497 ax-17 1513 ax-i9 1517 ax-ial 1521 ax-i5r 1522 ax-13 2137 ax-14 2138 ax-ext 2146 ax-coll 4094 ax-sep 4097 ax-nul 4105 ax-pow 4150 ax-pr 4184 ax-un 4408 ax-setind 4511 ax-iinf 4562 ax-cnex 7838 ax-resscn 7839 ax-1cn 7840 ax-1re 7841 ax-icn 7842 ax-addcl 7843 ax-addrcl 7844 ax-mulcl 7845 ax-mulrcl 7846 ax-addcom 7847 ax-mulcom 7848 ax-addass 7849 ax-mulass 7850 ax-distr 7851 ax-i2m1 7852 ax-0lt1 7853 ax-1rid 7854 ax-0id 7855 ax-rnegex 7856 ax-precex 7857 ax-cnre 7858 ax-pre-ltirr 7859 ax-pre-ltwlin 7860 ax-pre-lttrn 7861 ax-pre-apti 7862 ax-pre-ltadd 7863 ax-pre-mulgt0 7864 ax-pre-mulext 7865 ax-arch 7866 ax-caucvg 7867 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 968 df-3an 969 df-tru 1345 df-fal 1348 df-nf 1448 df-sb 1750 df-eu 2016 df-mo 2017 df-clab 2151 df-cleq 2157 df-clel 2160 df-nfc 2295 df-ne 2335 df-nel 2430 df-ral 2447 df-rex 2448 df-reu 2449 df-rmo 2450 df-rab 2451 df-v 2726 df-sbc 2950 df-csb 3044 df-dif 3116 df-un 3118 df-in 3120 df-ss 3127 df-nul 3408 df-if 3519 df-pw 3558 df-sn 3579 df-pr 3580 df-op 3582 df-uni 3787 df-int 3822 df-iun 3865 df-br 3980 df-opab 4041 df-mpt 4042 df-tr 4078 df-id 4268 df-po 4271 df-iso 4272 df-iord 4341 df-on 4343 df-ilim 4344 df-suc 4346 df-iom 4565 df-xp 4607 df-rel 4608 df-cnv 4609 df-co 4610 df-dm 4611 df-rn 4612 df-res 4613 df-ima 4614 df-iota 5150 df-fun 5187 df-fn 5188 df-f 5189 df-f1 5190 df-fo 5191 df-f1o 5192 df-fv 5193 df-isom 5194 df-riota 5795 df-ov 5842 df-oprab 5843 df-mpo 5844 df-1st 6103 df-2nd 6104 df-recs 6267 df-irdg 6332 df-frec 6353 df-1o 6378 df-oadd 6382 df-er 6495 df-en 6701 df-dom 6702 df-fin 6703 df-pnf 7929 df-mnf 7930 df-xr 7931 df-ltxr 7932 df-le 7933 df-sub 8065 df-neg 8066 df-reap 8467 df-ap 8474 df-div 8563 df-inn 8852 df-2 8910 df-3 8911 df-4 8912 df-n0 9109 df-z 9186 df-uz 9461 df-q 9552 df-rp 9584 df-fz 9939 df-fzo 10072 df-seqfrec 10375 df-exp 10449 df-fac 10633 df-bc 10655 df-ihash 10683 df-cj 10778 df-re 10779 df-im 10780 df-rsqrt 10934 df-abs 10935 df-clim 11214 df-sumdc 11289 |
This theorem is referenced by: binom1p 11420 efaddlem 11609 |
Copyright terms: Public domain | W3C validator |