Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  binom Unicode version

Theorem binom 11246
 Description: The binomial theorem: is the sum from to of . Theorem 15-2.8 of [Gleason] p. 296. This part of the proof sets up the induction and does the base case, with the bulk of the work (the induction step) in binomlem 11245. This is Metamath 100 proof #44. (Contributed by NM, 7-Dec-2005.) (Proof shortened by Mario Carneiro, 24-Apr-2014.)
Assertion
Ref Expression
binom
Distinct variable groups:   ,   ,   ,

Proof of Theorem binom
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 5775 . . . . . 6
2 oveq2 5775 . . . . . . 7
3 oveq1 5774 . . . . . . . . 9
4 oveq1 5774 . . . . . . . . . . 11
54oveq2d 5783 . . . . . . . . . 10
65oveq1d 5782 . . . . . . . . 9
73, 6oveq12d 5785 . . . . . . . 8
87adantr 274 . . . . . . 7
92, 8sumeq12dv 11134 . . . . . 6
101, 9eqeq12d 2152 . . . . 5
1110imbi2d 229 . . . 4
12 oveq2 5775 . . . . . 6
13 oveq2 5775 . . . . . . 7
14 oveq1 5774 . . . . . . . . 9
15 oveq1 5774 . . . . . . . . . . 11
1615oveq2d 5783 . . . . . . . . . 10
1716oveq1d 5782 . . . . . . . . 9
1814, 17oveq12d 5785 . . . . . . . 8
1918adantr 274 . . . . . . 7
2013, 19sumeq12dv 11134 . . . . . 6
2112, 20eqeq12d 2152 . . . . 5
2221imbi2d 229 . . . 4
23 oveq2 5775 . . . . . 6
24 oveq2 5775 . . . . . . 7
25 oveq1 5774 . . . . . . . . 9
26 oveq1 5774 . . . . . . . . . . 11
2726oveq2d 5783 . . . . . . . . . 10
2827oveq1d 5782 . . . . . . . . 9
2925, 28oveq12d 5785 . . . . . . . 8
3029adantr 274 . . . . . . 7
3124, 30sumeq12dv 11134 . . . . . 6
3223, 31eqeq12d 2152 . . . . 5
3332imbi2d 229 . . . 4
34 oveq2 5775 . . . . . 6
35 oveq2 5775 . . . . . . 7
36 oveq1 5774 . . . . . . . . 9
37 oveq1 5774 . . . . . . . . . . 11
3837oveq2d 5783 . . . . . . . . . 10
3938oveq1d 5782 . . . . . . . . 9
4036, 39oveq12d 5785 . . . . . . . 8
4140adantr 274 . . . . . . 7
4235, 41sumeq12dv 11134 . . . . . 6
4334, 42eqeq12d 2152 . . . . 5
4443imbi2d 229 . . . 4
45 exp0 10290 . . . . . . . . 9
46 exp0 10290 . . . . . . . . 9
4745, 46oveqan12d 5786 . . . . . . . 8
48 1t1e1 8865 . . . . . . . 8
4947, 48syl6eq 2186 . . . . . . 7
5049oveq2d 5783 . . . . . 6
5150, 48syl6eq 2186 . . . . 5
52 0z 9058 . . . . . 6
53 ax-1cn 7706 . . . . . . 7
5451, 53syl6eqel 2228 . . . . . 6
55 oveq2 5775 . . . . . . . . 9
56 0nn0 8985 . . . . . . . . . 10
57 bcn0 10494 . . . . . . . . . 10
5856, 57ax-mp 5 . . . . . . . . 9
5955, 58syl6eq 2186 . . . . . . . 8
60 oveq2 5775 . . . . . . . . . . 11
61 0m0e0 8825 . . . . . . . . . . 11
6260, 61syl6eq 2186 . . . . . . . . . 10
6362oveq2d 5783 . . . . . . . . 9
64 oveq2 5775 . . . . . . . . 9
6563, 64oveq12d 5785 . . . . . . . 8
6659, 65oveq12d 5785 . . . . . . 7
6766fsum1 11174 . . . . . 6
6852, 54, 67sylancr 410 . . . . 5
69 addcl 7738 . . . . . 6
7069exp0d 10411 . . . . 5
7151, 68, 703eqtr4rd 2181 . . . 4
72 simprl 520 . . . . . . 7
73 simprr 521 . . . . . . 7
74 simpl 108 . . . . . . 7
75 id 19 . . . . . . 7
7672, 73, 74, 75binomlem 11245 . . . . . 6
7776exp31 361 . . . . 5
7877a2d 26 . . . 4
7911, 22, 33, 44, 71, 78nn0ind 9158 . . 3
8079impcom 124 . 2
81803impa 1176 1
 Colors of variables: wff set class Syntax hints:   wi 4   wa 103   w3a 962   wceq 1331   wcel 1480  (class class class)co 5767  cc 7611  cc0 7613  c1 7614   caddc 7616   cmul 7618   cmin 7926  cn0 8970  cz 9047  cfz 9783  cexp 10285   cbc 10486  csu 11115 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-coll 4038  ax-sep 4041  ax-nul 4049  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-iinf 4497  ax-cnex 7704  ax-resscn 7705  ax-1cn 7706  ax-1re 7707  ax-icn 7708  ax-addcl 7709  ax-addrcl 7710  ax-mulcl 7711  ax-mulrcl 7712  ax-addcom 7713  ax-mulcom 7714  ax-addass 7715  ax-mulass 7716  ax-distr 7717  ax-i2m1 7718  ax-0lt1 7719  ax-1rid 7720  ax-0id 7721  ax-rnegex 7722  ax-precex 7723  ax-cnre 7724  ax-pre-ltirr 7725  ax-pre-ltwlin 7726  ax-pre-lttrn 7727  ax-pre-apti 7728  ax-pre-ltadd 7729  ax-pre-mulgt0 7730  ax-pre-mulext 7731  ax-arch 7732  ax-caucvg 7733 This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-nel 2402  df-ral 2419  df-rex 2420  df-reu 2421  df-rmo 2422  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-nul 3359  df-if 3470  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-int 3767  df-iun 3810  df-br 3925  df-opab 3985  df-mpt 3986  df-tr 4022  df-id 4210  df-po 4213  df-iso 4214  df-iord 4283  df-on 4285  df-ilim 4286  df-suc 4288  df-iom 4500  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-f1 5123  df-fo 5124  df-f1o 5125  df-fv 5126  df-isom 5127  df-riota 5723  df-ov 5770  df-oprab 5771  df-mpo 5772  df-1st 6031  df-2nd 6032  df-recs 6195  df-irdg 6260  df-frec 6281  df-1o 6306  df-oadd 6310  df-er 6422  df-en 6628  df-dom 6629  df-fin 6630  df-pnf 7795  df-mnf 7796  df-xr 7797  df-ltxr 7798  df-le 7799  df-sub 7928  df-neg 7929  df-reap 8330  df-ap 8337  df-div 8426  df-inn 8714  df-2 8772  df-3 8773  df-4 8774  df-n0 8971  df-z 9048  df-uz 9320  df-q 9405  df-rp 9435  df-fz 9784  df-fzo 9913  df-seqfrec 10212  df-exp 10286  df-fac 10465  df-bc 10487  df-ihash 10515  df-cj 10607  df-re 10608  df-im 10609  df-rsqrt 10763  df-abs 10764  df-clim 11041  df-sumdc 11116 This theorem is referenced by:  binom1p  11247  efaddlem  11369
 Copyright terms: Public domain W3C validator