| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > binom | Unicode version | ||
| Description: The binomial theorem:
|
| Ref | Expression |
|---|---|
| binom |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 6009 |
. . . . . 6
| |
| 2 | oveq2 6009 |
. . . . . . 7
| |
| 3 | oveq1 6008 |
. . . . . . . . 9
| |
| 4 | oveq1 6008 |
. . . . . . . . . . 11
| |
| 5 | 4 | oveq2d 6017 |
. . . . . . . . . 10
|
| 6 | 5 | oveq1d 6016 |
. . . . . . . . 9
|
| 7 | 3, 6 | oveq12d 6019 |
. . . . . . . 8
|
| 8 | 7 | adantr 276 |
. . . . . . 7
|
| 9 | 2, 8 | sumeq12dv 11883 |
. . . . . 6
|
| 10 | 1, 9 | eqeq12d 2244 |
. . . . 5
|
| 11 | 10 | imbi2d 230 |
. . . 4
|
| 12 | oveq2 6009 |
. . . . . 6
| |
| 13 | oveq2 6009 |
. . . . . . 7
| |
| 14 | oveq1 6008 |
. . . . . . . . 9
| |
| 15 | oveq1 6008 |
. . . . . . . . . . 11
| |
| 16 | 15 | oveq2d 6017 |
. . . . . . . . . 10
|
| 17 | 16 | oveq1d 6016 |
. . . . . . . . 9
|
| 18 | 14, 17 | oveq12d 6019 |
. . . . . . . 8
|
| 19 | 18 | adantr 276 |
. . . . . . 7
|
| 20 | 13, 19 | sumeq12dv 11883 |
. . . . . 6
|
| 21 | 12, 20 | eqeq12d 2244 |
. . . . 5
|
| 22 | 21 | imbi2d 230 |
. . . 4
|
| 23 | oveq2 6009 |
. . . . . 6
| |
| 24 | oveq2 6009 |
. . . . . . 7
| |
| 25 | oveq1 6008 |
. . . . . . . . 9
| |
| 26 | oveq1 6008 |
. . . . . . . . . . 11
| |
| 27 | 26 | oveq2d 6017 |
. . . . . . . . . 10
|
| 28 | 27 | oveq1d 6016 |
. . . . . . . . 9
|
| 29 | 25, 28 | oveq12d 6019 |
. . . . . . . 8
|
| 30 | 29 | adantr 276 |
. . . . . . 7
|
| 31 | 24, 30 | sumeq12dv 11883 |
. . . . . 6
|
| 32 | 23, 31 | eqeq12d 2244 |
. . . . 5
|
| 33 | 32 | imbi2d 230 |
. . . 4
|
| 34 | oveq2 6009 |
. . . . . 6
| |
| 35 | oveq2 6009 |
. . . . . . 7
| |
| 36 | oveq1 6008 |
. . . . . . . . 9
| |
| 37 | oveq1 6008 |
. . . . . . . . . . 11
| |
| 38 | 37 | oveq2d 6017 |
. . . . . . . . . 10
|
| 39 | 38 | oveq1d 6016 |
. . . . . . . . 9
|
| 40 | 36, 39 | oveq12d 6019 |
. . . . . . . 8
|
| 41 | 40 | adantr 276 |
. . . . . . 7
|
| 42 | 35, 41 | sumeq12dv 11883 |
. . . . . 6
|
| 43 | 34, 42 | eqeq12d 2244 |
. . . . 5
|
| 44 | 43 | imbi2d 230 |
. . . 4
|
| 45 | exp0 10765 |
. . . . . . . . 9
| |
| 46 | exp0 10765 |
. . . . . . . . 9
| |
| 47 | 45, 46 | oveqan12d 6020 |
. . . . . . . 8
|
| 48 | 1t1e1 9263 |
. . . . . . . 8
| |
| 49 | 47, 48 | eqtrdi 2278 |
. . . . . . 7
|
| 50 | 49 | oveq2d 6017 |
. . . . . 6
|
| 51 | 50, 48 | eqtrdi 2278 |
. . . . 5
|
| 52 | 0z 9457 |
. . . . . 6
| |
| 53 | ax-1cn 8092 |
. . . . . . 7
| |
| 54 | 51, 53 | eqeltrdi 2320 |
. . . . . 6
|
| 55 | oveq2 6009 |
. . . . . . . . 9
| |
| 56 | 0nn0 9384 |
. . . . . . . . . 10
| |
| 57 | bcn0 10977 |
. . . . . . . . . 10
| |
| 58 | 56, 57 | ax-mp 5 |
. . . . . . . . 9
|
| 59 | 55, 58 | eqtrdi 2278 |
. . . . . . . 8
|
| 60 | oveq2 6009 |
. . . . . . . . . . 11
| |
| 61 | 0m0e0 9222 |
. . . . . . . . . . 11
| |
| 62 | 60, 61 | eqtrdi 2278 |
. . . . . . . . . 10
|
| 63 | 62 | oveq2d 6017 |
. . . . . . . . 9
|
| 64 | oveq2 6009 |
. . . . . . . . 9
| |
| 65 | 63, 64 | oveq12d 6019 |
. . . . . . . 8
|
| 66 | 59, 65 | oveq12d 6019 |
. . . . . . 7
|
| 67 | 66 | fsum1 11923 |
. . . . . 6
|
| 68 | 52, 54, 67 | sylancr 414 |
. . . . 5
|
| 69 | addcl 8124 |
. . . . . 6
| |
| 70 | 69 | exp0d 10889 |
. . . . 5
|
| 71 | 51, 68, 70 | 3eqtr4rd 2273 |
. . . 4
|
| 72 | simprl 529 |
. . . . . . 7
| |
| 73 | simprr 531 |
. . . . . . 7
| |
| 74 | simpl 109 |
. . . . . . 7
| |
| 75 | id 19 |
. . . . . . 7
| |
| 76 | 72, 73, 74, 75 | binomlem 11994 |
. . . . . 6
|
| 77 | 76 | exp31 364 |
. . . . 5
|
| 78 | 77 | a2d 26 |
. . . 4
|
| 79 | 11, 22, 33, 44, 71, 78 | nn0ind 9561 |
. . 3
|
| 80 | 79 | impcom 125 |
. 2
|
| 81 | 80 | 3impa 1218 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 ax-cnex 8090 ax-resscn 8091 ax-1cn 8092 ax-1re 8093 ax-icn 8094 ax-addcl 8095 ax-addrcl 8096 ax-mulcl 8097 ax-mulrcl 8098 ax-addcom 8099 ax-mulcom 8100 ax-addass 8101 ax-mulass 8102 ax-distr 8103 ax-i2m1 8104 ax-0lt1 8105 ax-1rid 8106 ax-0id 8107 ax-rnegex 8108 ax-precex 8109 ax-cnre 8110 ax-pre-ltirr 8111 ax-pre-ltwlin 8112 ax-pre-lttrn 8113 ax-pre-apti 8114 ax-pre-ltadd 8115 ax-pre-mulgt0 8116 ax-pre-mulext 8117 ax-arch 8118 ax-caucvg 8119 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-id 4384 df-po 4387 df-iso 4388 df-iord 4457 df-on 4459 df-ilim 4460 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-isom 5327 df-riota 5954 df-ov 6004 df-oprab 6005 df-mpo 6006 df-1st 6286 df-2nd 6287 df-recs 6451 df-irdg 6516 df-frec 6537 df-1o 6562 df-oadd 6566 df-er 6680 df-en 6888 df-dom 6889 df-fin 6890 df-pnf 8183 df-mnf 8184 df-xr 8185 df-ltxr 8186 df-le 8187 df-sub 8319 df-neg 8320 df-reap 8722 df-ap 8729 df-div 8820 df-inn 9111 df-2 9169 df-3 9170 df-4 9171 df-n0 9370 df-z 9447 df-uz 9723 df-q 9815 df-rp 9850 df-fz 10205 df-fzo 10339 df-seqfrec 10670 df-exp 10761 df-fac 10948 df-bc 10970 df-ihash 10998 df-cj 11353 df-re 11354 df-im 11355 df-rsqrt 11509 df-abs 11510 df-clim 11790 df-sumdc 11865 |
| This theorem is referenced by: binom1p 11996 efaddlem 12185 |
| Copyright terms: Public domain | W3C validator |