ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  binom Unicode version

Theorem binom 11630
Description: The binomial theorem:  ( A  +  B ) ^ N is the sum from  k  =  0 to  N of  ( N  _C  k )  x.  ( ( A ^
k )  x.  ( B ^ ( N  -  k ) ). Theorem 15-2.8 of [Gleason] p. 296. This part of the proof sets up the induction and does the base case, with the bulk of the work (the induction step) in binomlem 11629. This is Metamath 100 proof #44. (Contributed by NM, 7-Dec-2005.) (Proof shortened by Mario Carneiro, 24-Apr-2014.)
Assertion
Ref Expression
binom  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  N  e.  NN0 )  ->  (
( A  +  B
) ^ N )  =  sum_ k  e.  ( 0 ... N ) ( ( N  _C  k )  x.  (
( A ^ ( N  -  k )
)  x.  ( B ^ k ) ) ) )
Distinct variable groups:    A, k    B, k    k, N

Proof of Theorem binom
Dummy variables  n  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 5927 . . . . . 6  |-  ( x  =  0  ->  (
( A  +  B
) ^ x )  =  ( ( A  +  B ) ^
0 ) )
2 oveq2 5927 . . . . . . 7  |-  ( x  =  0  ->  (
0 ... x )  =  ( 0 ... 0
) )
3 oveq1 5926 . . . . . . . . 9  |-  ( x  =  0  ->  (
x  _C  k )  =  ( 0  _C  k ) )
4 oveq1 5926 . . . . . . . . . . 11  |-  ( x  =  0  ->  (
x  -  k )  =  ( 0  -  k ) )
54oveq2d 5935 . . . . . . . . . 10  |-  ( x  =  0  ->  ( A ^ ( x  -  k ) )  =  ( A ^ (
0  -  k ) ) )
65oveq1d 5934 . . . . . . . . 9  |-  ( x  =  0  ->  (
( A ^ (
x  -  k ) )  x.  ( B ^ k ) )  =  ( ( A ^ ( 0  -  k ) )  x.  ( B ^ k
) ) )
73, 6oveq12d 5937 . . . . . . . 8  |-  ( x  =  0  ->  (
( x  _C  k
)  x.  ( ( A ^ ( x  -  k ) )  x.  ( B ^
k ) ) )  =  ( ( 0  _C  k )  x.  ( ( A ^
( 0  -  k
) )  x.  ( B ^ k ) ) ) )
87adantr 276 . . . . . . 7  |-  ( ( x  =  0  /\  k  e.  ( 0 ... x ) )  ->  ( ( x  _C  k )  x.  ( ( A ^
( x  -  k
) )  x.  ( B ^ k ) ) )  =  ( ( 0  _C  k )  x.  ( ( A ^ ( 0  -  k ) )  x.  ( B ^ k
) ) ) )
92, 8sumeq12dv 11518 . . . . . 6  |-  ( x  =  0  ->  sum_ k  e.  ( 0 ... x
) ( ( x  _C  k )  x.  ( ( A ^
( x  -  k
) )  x.  ( B ^ k ) ) )  =  sum_ k  e.  ( 0 ... 0
) ( ( 0  _C  k )  x.  ( ( A ^
( 0  -  k
) )  x.  ( B ^ k ) ) ) )
101, 9eqeq12d 2208 . . . . 5  |-  ( x  =  0  ->  (
( ( A  +  B ) ^ x
)  =  sum_ k  e.  ( 0 ... x
) ( ( x  _C  k )  x.  ( ( A ^
( x  -  k
) )  x.  ( B ^ k ) ) )  <->  ( ( A  +  B ) ^
0 )  =  sum_ k  e.  ( 0 ... 0 ) ( ( 0  _C  k
)  x.  ( ( A ^ ( 0  -  k ) )  x.  ( B ^
k ) ) ) ) )
1110imbi2d 230 . . . 4  |-  ( x  =  0  ->  (
( ( A  e.  CC  /\  B  e.  CC )  ->  (
( A  +  B
) ^ x )  =  sum_ k  e.  ( 0 ... x ) ( ( x  _C  k )  x.  (
( A ^ (
x  -  k ) )  x.  ( B ^ k ) ) ) )  <->  ( ( A  e.  CC  /\  B  e.  CC )  ->  (
( A  +  B
) ^ 0 )  =  sum_ k  e.  ( 0 ... 0 ) ( ( 0  _C  k )  x.  (
( A ^ (
0  -  k ) )  x.  ( B ^ k ) ) ) ) ) )
12 oveq2 5927 . . . . . 6  |-  ( x  =  n  ->  (
( A  +  B
) ^ x )  =  ( ( A  +  B ) ^
n ) )
13 oveq2 5927 . . . . . . 7  |-  ( x  =  n  ->  (
0 ... x )  =  ( 0 ... n
) )
14 oveq1 5926 . . . . . . . . 9  |-  ( x  =  n  ->  (
x  _C  k )  =  ( n  _C  k ) )
15 oveq1 5926 . . . . . . . . . . 11  |-  ( x  =  n  ->  (
x  -  k )  =  ( n  -  k ) )
1615oveq2d 5935 . . . . . . . . . 10  |-  ( x  =  n  ->  ( A ^ ( x  -  k ) )  =  ( A ^ (
n  -  k ) ) )
1716oveq1d 5934 . . . . . . . . 9  |-  ( x  =  n  ->  (
( A ^ (
x  -  k ) )  x.  ( B ^ k ) )  =  ( ( A ^ ( n  -  k ) )  x.  ( B ^ k
) ) )
1814, 17oveq12d 5937 . . . . . . . 8  |-  ( x  =  n  ->  (
( x  _C  k
)  x.  ( ( A ^ ( x  -  k ) )  x.  ( B ^
k ) ) )  =  ( ( n  _C  k )  x.  ( ( A ^
( n  -  k
) )  x.  ( B ^ k ) ) ) )
1918adantr 276 . . . . . . 7  |-  ( ( x  =  n  /\  k  e.  ( 0 ... x ) )  ->  ( ( x  _C  k )  x.  ( ( A ^
( x  -  k
) )  x.  ( B ^ k ) ) )  =  ( ( n  _C  k )  x.  ( ( A ^ ( n  -  k ) )  x.  ( B ^ k
) ) ) )
2013, 19sumeq12dv 11518 . . . . . 6  |-  ( x  =  n  ->  sum_ k  e.  ( 0 ... x
) ( ( x  _C  k )  x.  ( ( A ^
( x  -  k
) )  x.  ( B ^ k ) ) )  =  sum_ k  e.  ( 0 ... n
) ( ( n  _C  k )  x.  ( ( A ^
( n  -  k
) )  x.  ( B ^ k ) ) ) )
2112, 20eqeq12d 2208 . . . . 5  |-  ( x  =  n  ->  (
( ( A  +  B ) ^ x
)  =  sum_ k  e.  ( 0 ... x
) ( ( x  _C  k )  x.  ( ( A ^
( x  -  k
) )  x.  ( B ^ k ) ) )  <->  ( ( A  +  B ) ^
n )  =  sum_ k  e.  ( 0 ... n ) ( ( n  _C  k
)  x.  ( ( A ^ ( n  -  k ) )  x.  ( B ^
k ) ) ) ) )
2221imbi2d 230 . . . 4  |-  ( x  =  n  ->  (
( ( A  e.  CC  /\  B  e.  CC )  ->  (
( A  +  B
) ^ x )  =  sum_ k  e.  ( 0 ... x ) ( ( x  _C  k )  x.  (
( A ^ (
x  -  k ) )  x.  ( B ^ k ) ) ) )  <->  ( ( A  e.  CC  /\  B  e.  CC )  ->  (
( A  +  B
) ^ n )  =  sum_ k  e.  ( 0 ... n ) ( ( n  _C  k )  x.  (
( A ^ (
n  -  k ) )  x.  ( B ^ k ) ) ) ) ) )
23 oveq2 5927 . . . . . 6  |-  ( x  =  ( n  + 
1 )  ->  (
( A  +  B
) ^ x )  =  ( ( A  +  B ) ^
( n  +  1 ) ) )
24 oveq2 5927 . . . . . . 7  |-  ( x  =  ( n  + 
1 )  ->  (
0 ... x )  =  ( 0 ... (
n  +  1 ) ) )
25 oveq1 5926 . . . . . . . . 9  |-  ( x  =  ( n  + 
1 )  ->  (
x  _C  k )  =  ( ( n  +  1 )  _C  k ) )
26 oveq1 5926 . . . . . . . . . . 11  |-  ( x  =  ( n  + 
1 )  ->  (
x  -  k )  =  ( ( n  +  1 )  -  k ) )
2726oveq2d 5935 . . . . . . . . . 10  |-  ( x  =  ( n  + 
1 )  ->  ( A ^ ( x  -  k ) )  =  ( A ^ (
( n  +  1 )  -  k ) ) )
2827oveq1d 5934 . . . . . . . . 9  |-  ( x  =  ( n  + 
1 )  ->  (
( A ^ (
x  -  k ) )  x.  ( B ^ k ) )  =  ( ( A ^ ( ( n  +  1 )  -  k ) )  x.  ( B ^ k
) ) )
2925, 28oveq12d 5937 . . . . . . . 8  |-  ( x  =  ( n  + 
1 )  ->  (
( x  _C  k
)  x.  ( ( A ^ ( x  -  k ) )  x.  ( B ^
k ) ) )  =  ( ( ( n  +  1 )  _C  k )  x.  ( ( A ^
( ( n  + 
1 )  -  k
) )  x.  ( B ^ k ) ) ) )
3029adantr 276 . . . . . . 7  |-  ( ( x  =  ( n  +  1 )  /\  k  e.  ( 0 ... x ) )  ->  ( ( x  _C  k )  x.  ( ( A ^
( x  -  k
) )  x.  ( B ^ k ) ) )  =  ( ( ( n  +  1 )  _C  k )  x.  ( ( A ^ ( ( n  +  1 )  -  k ) )  x.  ( B ^ k
) ) ) )
3124, 30sumeq12dv 11518 . . . . . 6  |-  ( x  =  ( n  + 
1 )  ->  sum_ k  e.  ( 0 ... x
) ( ( x  _C  k )  x.  ( ( A ^
( x  -  k
) )  x.  ( B ^ k ) ) )  =  sum_ k  e.  ( 0 ... (
n  +  1 ) ) ( ( ( n  +  1 )  _C  k )  x.  ( ( A ^
( ( n  + 
1 )  -  k
) )  x.  ( B ^ k ) ) ) )
3223, 31eqeq12d 2208 . . . . 5  |-  ( x  =  ( n  + 
1 )  ->  (
( ( A  +  B ) ^ x
)  =  sum_ k  e.  ( 0 ... x
) ( ( x  _C  k )  x.  ( ( A ^
( x  -  k
) )  x.  ( B ^ k ) ) )  <->  ( ( A  +  B ) ^
( n  +  1 ) )  =  sum_ k  e.  ( 0 ... ( n  + 
1 ) ) ( ( ( n  + 
1 )  _C  k
)  x.  ( ( A ^ ( ( n  +  1 )  -  k ) )  x.  ( B ^
k ) ) ) ) )
3332imbi2d 230 . . . 4  |-  ( x  =  ( n  + 
1 )  ->  (
( ( A  e.  CC  /\  B  e.  CC )  ->  (
( A  +  B
) ^ x )  =  sum_ k  e.  ( 0 ... x ) ( ( x  _C  k )  x.  (
( A ^ (
x  -  k ) )  x.  ( B ^ k ) ) ) )  <->  ( ( A  e.  CC  /\  B  e.  CC )  ->  (
( A  +  B
) ^ ( n  +  1 ) )  =  sum_ k  e.  ( 0 ... ( n  +  1 ) ) ( ( ( n  +  1 )  _C  k )  x.  (
( A ^ (
( n  +  1 )  -  k ) )  x.  ( B ^ k ) ) ) ) ) )
34 oveq2 5927 . . . . . 6  |-  ( x  =  N  ->  (
( A  +  B
) ^ x )  =  ( ( A  +  B ) ^ N ) )
35 oveq2 5927 . . . . . . 7  |-  ( x  =  N  ->  (
0 ... x )  =  ( 0 ... N
) )
36 oveq1 5926 . . . . . . . . 9  |-  ( x  =  N  ->  (
x  _C  k )  =  ( N  _C  k ) )
37 oveq1 5926 . . . . . . . . . . 11  |-  ( x  =  N  ->  (
x  -  k )  =  ( N  -  k ) )
3837oveq2d 5935 . . . . . . . . . 10  |-  ( x  =  N  ->  ( A ^ ( x  -  k ) )  =  ( A ^ ( N  -  k )
) )
3938oveq1d 5934 . . . . . . . . 9  |-  ( x  =  N  ->  (
( A ^ (
x  -  k ) )  x.  ( B ^ k ) )  =  ( ( A ^ ( N  -  k ) )  x.  ( B ^ k
) ) )
4036, 39oveq12d 5937 . . . . . . . 8  |-  ( x  =  N  ->  (
( x  _C  k
)  x.  ( ( A ^ ( x  -  k ) )  x.  ( B ^
k ) ) )  =  ( ( N  _C  k )  x.  ( ( A ^
( N  -  k
) )  x.  ( B ^ k ) ) ) )
4140adantr 276 . . . . . . 7  |-  ( ( x  =  N  /\  k  e.  ( 0 ... x ) )  ->  ( ( x  _C  k )  x.  ( ( A ^
( x  -  k
) )  x.  ( B ^ k ) ) )  =  ( ( N  _C  k )  x.  ( ( A ^ ( N  -  k ) )  x.  ( B ^ k
) ) ) )
4235, 41sumeq12dv 11518 . . . . . 6  |-  ( x  =  N  ->  sum_ k  e.  ( 0 ... x
) ( ( x  _C  k )  x.  ( ( A ^
( x  -  k
) )  x.  ( B ^ k ) ) )  =  sum_ k  e.  ( 0 ... N
) ( ( N  _C  k )  x.  ( ( A ^
( N  -  k
) )  x.  ( B ^ k ) ) ) )
4334, 42eqeq12d 2208 . . . . 5  |-  ( x  =  N  ->  (
( ( A  +  B ) ^ x
)  =  sum_ k  e.  ( 0 ... x
) ( ( x  _C  k )  x.  ( ( A ^
( x  -  k
) )  x.  ( B ^ k ) ) )  <->  ( ( A  +  B ) ^ N )  =  sum_ k  e.  ( 0 ... N ) ( ( N  _C  k
)  x.  ( ( A ^ ( N  -  k ) )  x.  ( B ^
k ) ) ) ) )
4443imbi2d 230 . . . 4  |-  ( x  =  N  ->  (
( ( A  e.  CC  /\  B  e.  CC )  ->  (
( A  +  B
) ^ x )  =  sum_ k  e.  ( 0 ... x ) ( ( x  _C  k )  x.  (
( A ^ (
x  -  k ) )  x.  ( B ^ k ) ) ) )  <->  ( ( A  e.  CC  /\  B  e.  CC )  ->  (
( A  +  B
) ^ N )  =  sum_ k  e.  ( 0 ... N ) ( ( N  _C  k )  x.  (
( A ^ ( N  -  k )
)  x.  ( B ^ k ) ) ) ) ) )
45 exp0 10617 . . . . . . . . 9  |-  ( A  e.  CC  ->  ( A ^ 0 )  =  1 )
46 exp0 10617 . . . . . . . . 9  |-  ( B  e.  CC  ->  ( B ^ 0 )  =  1 )
4745, 46oveqan12d 5938 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A ^
0 )  x.  ( B ^ 0 ) )  =  ( 1  x.  1 ) )
48 1t1e1 9137 . . . . . . . 8  |-  ( 1  x.  1 )  =  1
4947, 48eqtrdi 2242 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A ^
0 )  x.  ( B ^ 0 ) )  =  1 )
5049oveq2d 5935 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( 1  x.  (
( A ^ 0 )  x.  ( B ^ 0 ) ) )  =  ( 1  x.  1 ) )
5150, 48eqtrdi 2242 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( 1  x.  (
( A ^ 0 )  x.  ( B ^ 0 ) ) )  =  1 )
52 0z 9331 . . . . . 6  |-  0  e.  ZZ
53 ax-1cn 7967 . . . . . . 7  |-  1  e.  CC
5451, 53eqeltrdi 2284 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( 1  x.  (
( A ^ 0 )  x.  ( B ^ 0 ) ) )  e.  CC )
55 oveq2 5927 . . . . . . . . 9  |-  ( k  =  0  ->  (
0  _C  k )  =  ( 0  _C  0 ) )
56 0nn0 9258 . . . . . . . . . 10  |-  0  e.  NN0
57 bcn0 10829 . . . . . . . . . 10  |-  ( 0  e.  NN0  ->  ( 0  _C  0 )  =  1 )
5856, 57ax-mp 5 . . . . . . . . 9  |-  ( 0  _C  0 )  =  1
5955, 58eqtrdi 2242 . . . . . . . 8  |-  ( k  =  0  ->  (
0  _C  k )  =  1 )
60 oveq2 5927 . . . . . . . . . . 11  |-  ( k  =  0  ->  (
0  -  k )  =  ( 0  -  0 ) )
61 0m0e0 9096 . . . . . . . . . . 11  |-  ( 0  -  0 )  =  0
6260, 61eqtrdi 2242 . . . . . . . . . 10  |-  ( k  =  0  ->  (
0  -  k )  =  0 )
6362oveq2d 5935 . . . . . . . . 9  |-  ( k  =  0  ->  ( A ^ ( 0  -  k ) )  =  ( A ^ 0 ) )
64 oveq2 5927 . . . . . . . . 9  |-  ( k  =  0  ->  ( B ^ k )  =  ( B ^ 0 ) )
6563, 64oveq12d 5937 . . . . . . . 8  |-  ( k  =  0  ->  (
( A ^ (
0  -  k ) )  x.  ( B ^ k ) )  =  ( ( A ^ 0 )  x.  ( B ^ 0 ) ) )
6659, 65oveq12d 5937 . . . . . . 7  |-  ( k  =  0  ->  (
( 0  _C  k
)  x.  ( ( A ^ ( 0  -  k ) )  x.  ( B ^
k ) ) )  =  ( 1  x.  ( ( A ^
0 )  x.  ( B ^ 0 ) ) ) )
6766fsum1 11558 . . . . . 6  |-  ( ( 0  e.  ZZ  /\  ( 1  x.  (
( A ^ 0 )  x.  ( B ^ 0 ) ) )  e.  CC )  ->  sum_ k  e.  ( 0 ... 0 ) ( ( 0  _C  k )  x.  (
( A ^ (
0  -  k ) )  x.  ( B ^ k ) ) )  =  ( 1  x.  ( ( A ^ 0 )  x.  ( B ^ 0 ) ) ) )
6852, 54, 67sylancr 414 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  -> 
sum_ k  e.  ( 0 ... 0 ) ( ( 0  _C  k )  x.  (
( A ^ (
0  -  k ) )  x.  ( B ^ k ) ) )  =  ( 1  x.  ( ( A ^ 0 )  x.  ( B ^ 0 ) ) ) )
69 addcl 7999 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  +  B
)  e.  CC )
7069exp0d 10741 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  +  B ) ^ 0 )  =  1 )
7151, 68, 703eqtr4rd 2237 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  +  B ) ^ 0 )  =  sum_ k  e.  ( 0 ... 0
) ( ( 0  _C  k )  x.  ( ( A ^
( 0  -  k
) )  x.  ( B ^ k ) ) ) )
72 simprl 529 . . . . . . 7  |-  ( ( n  e.  NN0  /\  ( A  e.  CC  /\  B  e.  CC ) )  ->  A  e.  CC )
73 simprr 531 . . . . . . 7  |-  ( ( n  e.  NN0  /\  ( A  e.  CC  /\  B  e.  CC ) )  ->  B  e.  CC )
74 simpl 109 . . . . . . 7  |-  ( ( n  e.  NN0  /\  ( A  e.  CC  /\  B  e.  CC ) )  ->  n  e.  NN0 )
75 id 19 . . . . . . 7  |-  ( ( ( A  +  B
) ^ n )  =  sum_ k  e.  ( 0 ... n ) ( ( n  _C  k )  x.  (
( A ^ (
n  -  k ) )  x.  ( B ^ k ) ) )  ->  ( ( A  +  B ) ^ n )  = 
sum_ k  e.  ( 0 ... n ) ( ( n  _C  k )  x.  (
( A ^ (
n  -  k ) )  x.  ( B ^ k ) ) ) )
7672, 73, 74, 75binomlem 11629 . . . . . 6  |-  ( ( ( n  e.  NN0  /\  ( A  e.  CC  /\  B  e.  CC ) )  /\  ( ( A  +  B ) ^ n )  = 
sum_ k  e.  ( 0 ... n ) ( ( n  _C  k )  x.  (
( A ^ (
n  -  k ) )  x.  ( B ^ k ) ) ) )  ->  (
( A  +  B
) ^ ( n  +  1 ) )  =  sum_ k  e.  ( 0 ... ( n  +  1 ) ) ( ( ( n  +  1 )  _C  k )  x.  (
( A ^ (
( n  +  1 )  -  k ) )  x.  ( B ^ k ) ) ) )
7776exp31 364 . . . . 5  |-  ( n  e.  NN0  ->  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( A  +  B ) ^
n )  =  sum_ k  e.  ( 0 ... n ) ( ( n  _C  k
)  x.  ( ( A ^ ( n  -  k ) )  x.  ( B ^
k ) ) )  ->  ( ( A  +  B ) ^
( n  +  1 ) )  =  sum_ k  e.  ( 0 ... ( n  + 
1 ) ) ( ( ( n  + 
1 )  _C  k
)  x.  ( ( A ^ ( ( n  +  1 )  -  k ) )  x.  ( B ^
k ) ) ) ) ) )
7877a2d 26 . . . 4  |-  ( n  e.  NN0  ->  ( ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  +  B ) ^
n )  =  sum_ k  e.  ( 0 ... n ) ( ( n  _C  k
)  x.  ( ( A ^ ( n  -  k ) )  x.  ( B ^
k ) ) ) )  ->  ( ( A  e.  CC  /\  B  e.  CC )  ->  (
( A  +  B
) ^ ( n  +  1 ) )  =  sum_ k  e.  ( 0 ... ( n  +  1 ) ) ( ( ( n  +  1 )  _C  k )  x.  (
( A ^ (
( n  +  1 )  -  k ) )  x.  ( B ^ k ) ) ) ) ) )
7911, 22, 33, 44, 71, 78nn0ind 9434 . . 3  |-  ( N  e.  NN0  ->  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  +  B ) ^ N
)  =  sum_ k  e.  ( 0 ... N
) ( ( N  _C  k )  x.  ( ( A ^
( N  -  k
) )  x.  ( B ^ k ) ) ) ) )
8079impcom 125 . 2  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  N  e.  NN0 )  ->  ( ( A  +  B ) ^ N )  =  sum_ k  e.  ( 0 ... N ) ( ( N  _C  k
)  x.  ( ( A ^ ( N  -  k ) )  x.  ( B ^
k ) ) ) )
81803impa 1196 1  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  N  e.  NN0 )  ->  (
( A  +  B
) ^ N )  =  sum_ k  e.  ( 0 ... N ) ( ( N  _C  k )  x.  (
( A ^ ( N  -  k )
)  x.  ( B ^ k ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1364    e. wcel 2164  (class class class)co 5919   CCcc 7872   0cc0 7874   1c1 7875    + caddc 7877    x. cmul 7879    - cmin 8192   NN0cn0 9243   ZZcz 9320   ...cfz 10077   ^cexp 10612    _C cbc 10821   sum_csu 11499
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-mulrcl 7973  ax-addcom 7974  ax-mulcom 7975  ax-addass 7976  ax-mulass 7977  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-1rid 7981  ax-0id 7982  ax-rnegex 7983  ax-precex 7984  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-apti 7989  ax-pre-ltadd 7990  ax-pre-mulgt0 7991  ax-pre-mulext 7992  ax-arch 7993  ax-caucvg 7994
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-if 3559  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-po 4328  df-iso 4329  df-iord 4398  df-on 4400  df-ilim 4401  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-irdg 6425  df-frec 6446  df-1o 6471  df-oadd 6475  df-er 6589  df-en 6797  df-dom 6798  df-fin 6799  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-reap 8596  df-ap 8603  df-div 8694  df-inn 8985  df-2 9043  df-3 9044  df-4 9045  df-n0 9244  df-z 9321  df-uz 9596  df-q 9688  df-rp 9723  df-fz 10078  df-fzo 10212  df-seqfrec 10522  df-exp 10613  df-fac 10800  df-bc 10822  df-ihash 10850  df-cj 10989  df-re 10990  df-im 10991  df-rsqrt 11145  df-abs 11146  df-clim 11425  df-sumdc 11500
This theorem is referenced by:  binom1p  11631  efaddlem  11820
  Copyright terms: Public domain W3C validator