ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prodf1 Unicode version

Theorem prodf1 11795
Description: The value of the partial products in a one-valued infinite product. (Contributed by Scott Fenton, 5-Dec-2017.)
Hypothesis
Ref Expression
prodf1.1  |-  Z  =  ( ZZ>= `  M )
Assertion
Ref Expression
prodf1  |-  ( N  e.  Z  ->  (  seq M (  x.  , 
( Z  X.  {
1 } ) ) `
 N )  =  1 )

Proof of Theorem prodf1
Dummy variables  k  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1t1e1 9188 . . 3  |-  ( 1  x.  1 )  =  1
21a1i 9 . 2  |-  ( N  e.  Z  ->  (
1  x.  1 )  =  1 )
3 prodf1.1 . . . 4  |-  Z  =  ( ZZ>= `  M )
43eleq2i 2271 . . 3  |-  ( N  e.  Z  <->  N  e.  ( ZZ>= `  M )
)
54biimpi 120 . 2  |-  ( N  e.  Z  ->  N  e.  ( ZZ>= `  M )
)
6 ax-1cn 8017 . . 3  |-  1  e.  CC
7 elfzuz 10142 . . . . 5  |-  ( k  e.  ( M ... N )  ->  k  e.  ( ZZ>= `  M )
)
87, 3eleqtrrdi 2298 . . . 4  |-  ( k  e.  ( M ... N )  ->  k  e.  Z )
98adantl 277 . . 3  |-  ( ( N  e.  Z  /\  k  e.  ( M ... N ) )  -> 
k  e.  Z )
10 fvconst2g 5797 . . 3  |-  ( ( 1  e.  CC  /\  k  e.  Z )  ->  ( ( Z  X.  { 1 } ) `
 k )  =  1 )
116, 9, 10sylancr 414 . 2  |-  ( ( N  e.  Z  /\  k  e.  ( M ... N ) )  -> 
( ( Z  X.  { 1 } ) `
 k )  =  1 )
126a1i 9 . 2  |-  ( N  e.  Z  ->  1  e.  CC )
133eleq2i 2271 . . . . 5  |-  ( k  e.  Z  <->  k  e.  ( ZZ>= `  M )
)
146, 10mpan 424 . . . . 5  |-  ( k  e.  Z  ->  (
( Z  X.  {
1 } ) `  k )  =  1 )
1513, 14sylbir 135 . . . 4  |-  ( k  e.  ( ZZ>= `  M
)  ->  ( ( Z  X.  { 1 } ) `  k )  =  1 )
1615adantl 277 . . 3  |-  ( ( N  e.  Z  /\  k  e.  ( ZZ>= `  M ) )  -> 
( ( Z  X.  { 1 } ) `
 k )  =  1 )
1716, 6eqeltrdi 2295 . 2  |-  ( ( N  e.  Z  /\  k  e.  ( ZZ>= `  M ) )  -> 
( ( Z  X.  { 1 } ) `
 k )  e.  CC )
18 mulcl 8051 . . 3  |-  ( ( k  e.  CC  /\  v  e.  CC )  ->  ( k  x.  v
)  e.  CC )
1918adantl 277 . 2  |-  ( ( N  e.  Z  /\  ( k  e.  CC  /\  v  e.  CC ) )  ->  ( k  x.  v )  e.  CC )
202, 5, 11, 12, 17, 19seq3id3 10667 1  |-  ( N  e.  Z  ->  (  seq M (  x.  , 
( Z  X.  {
1 } ) ) `
 N )  =  1 )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1372    e. wcel 2175   {csn 3632    X. cxp 4672   ` cfv 5270  (class class class)co 5943   CCcc 7922   1c1 7925    x. cmul 7929   ZZ>=cuz 9647   ...cfz 10129    seqcseq 10590
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-iinf 4635  ax-cnex 8015  ax-resscn 8016  ax-1cn 8017  ax-1re 8018  ax-icn 8019  ax-addcl 8020  ax-addrcl 8021  ax-mulcl 8022  ax-addcom 8024  ax-mulcom 8025  ax-addass 8026  ax-mulass 8027  ax-distr 8028  ax-i2m1 8029  ax-0lt1 8030  ax-1rid 8031  ax-0id 8032  ax-rnegex 8033  ax-cnre 8035  ax-pre-ltirr 8036  ax-pre-ltwlin 8037  ax-pre-lttrn 8038  ax-pre-ltadd 8040
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-id 4339  df-iord 4412  df-on 4414  df-ilim 4415  df-suc 4417  df-iom 4638  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-fv 5278  df-riota 5898  df-ov 5946  df-oprab 5947  df-mpo 5948  df-1st 6225  df-2nd 6226  df-recs 6390  df-frec 6476  df-pnf 8108  df-mnf 8109  df-xr 8110  df-ltxr 8111  df-le 8112  df-sub 8244  df-neg 8245  df-inn 9036  df-n0 9295  df-z 9372  df-uz 9648  df-fz 10130  df-fzo 10264  df-seqfrec 10591
This theorem is referenced by:  prodf1f  11796  fprodntrivap  11837  prod1dc  11839
  Copyright terms: Public domain W3C validator