ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prodf1 Unicode version

Theorem prodf1 11928
Description: The value of the partial products in a one-valued infinite product. (Contributed by Scott Fenton, 5-Dec-2017.)
Hypothesis
Ref Expression
prodf1.1  |-  Z  =  ( ZZ>= `  M )
Assertion
Ref Expression
prodf1  |-  ( N  e.  Z  ->  (  seq M (  x.  , 
( Z  X.  {
1 } ) ) `
 N )  =  1 )

Proof of Theorem prodf1
Dummy variables  k  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1t1e1 9209 . . 3  |-  ( 1  x.  1 )  =  1
21a1i 9 . 2  |-  ( N  e.  Z  ->  (
1  x.  1 )  =  1 )
3 prodf1.1 . . . 4  |-  Z  =  ( ZZ>= `  M )
43eleq2i 2273 . . 3  |-  ( N  e.  Z  <->  N  e.  ( ZZ>= `  M )
)
54biimpi 120 . 2  |-  ( N  e.  Z  ->  N  e.  ( ZZ>= `  M )
)
6 ax-1cn 8038 . . 3  |-  1  e.  CC
7 elfzuz 10163 . . . . 5  |-  ( k  e.  ( M ... N )  ->  k  e.  ( ZZ>= `  M )
)
87, 3eleqtrrdi 2300 . . . 4  |-  ( k  e.  ( M ... N )  ->  k  e.  Z )
98adantl 277 . . 3  |-  ( ( N  e.  Z  /\  k  e.  ( M ... N ) )  -> 
k  e.  Z )
10 fvconst2g 5811 . . 3  |-  ( ( 1  e.  CC  /\  k  e.  Z )  ->  ( ( Z  X.  { 1 } ) `
 k )  =  1 )
116, 9, 10sylancr 414 . 2  |-  ( ( N  e.  Z  /\  k  e.  ( M ... N ) )  -> 
( ( Z  X.  { 1 } ) `
 k )  =  1 )
126a1i 9 . 2  |-  ( N  e.  Z  ->  1  e.  CC )
133eleq2i 2273 . . . . 5  |-  ( k  e.  Z  <->  k  e.  ( ZZ>= `  M )
)
146, 10mpan 424 . . . . 5  |-  ( k  e.  Z  ->  (
( Z  X.  {
1 } ) `  k )  =  1 )
1513, 14sylbir 135 . . . 4  |-  ( k  e.  ( ZZ>= `  M
)  ->  ( ( Z  X.  { 1 } ) `  k )  =  1 )
1615adantl 277 . . 3  |-  ( ( N  e.  Z  /\  k  e.  ( ZZ>= `  M ) )  -> 
( ( Z  X.  { 1 } ) `
 k )  =  1 )
1716, 6eqeltrdi 2297 . 2  |-  ( ( N  e.  Z  /\  k  e.  ( ZZ>= `  M ) )  -> 
( ( Z  X.  { 1 } ) `
 k )  e.  CC )
18 mulcl 8072 . . 3  |-  ( ( k  e.  CC  /\  v  e.  CC )  ->  ( k  x.  v
)  e.  CC )
1918adantl 277 . 2  |-  ( ( N  e.  Z  /\  ( k  e.  CC  /\  v  e.  CC ) )  ->  ( k  x.  v )  e.  CC )
202, 5, 11, 12, 17, 19seq3id3 10691 1  |-  ( N  e.  Z  ->  (  seq M (  x.  , 
( Z  X.  {
1 } ) ) `
 N )  =  1 )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2177   {csn 3638    X. cxp 4681   ` cfv 5280  (class class class)co 5957   CCcc 7943   1c1 7946    x. cmul 7950   ZZ>=cuz 9668   ...cfz 10150    seqcseq 10614
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4167  ax-sep 4170  ax-nul 4178  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-setind 4593  ax-iinf 4644  ax-cnex 8036  ax-resscn 8037  ax-1cn 8038  ax-1re 8039  ax-icn 8040  ax-addcl 8041  ax-addrcl 8042  ax-mulcl 8043  ax-addcom 8045  ax-mulcom 8046  ax-addass 8047  ax-mulass 8048  ax-distr 8049  ax-i2m1 8050  ax-0lt1 8051  ax-1rid 8052  ax-0id 8053  ax-rnegex 8054  ax-cnre 8056  ax-pre-ltirr 8057  ax-pre-ltwlin 8058  ax-pre-lttrn 8059  ax-pre-ltadd 8061
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-int 3892  df-iun 3935  df-br 4052  df-opab 4114  df-mpt 4115  df-tr 4151  df-id 4348  df-iord 4421  df-on 4423  df-ilim 4424  df-suc 4426  df-iom 4647  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-f1 5285  df-fo 5286  df-f1o 5287  df-fv 5288  df-riota 5912  df-ov 5960  df-oprab 5961  df-mpo 5962  df-1st 6239  df-2nd 6240  df-recs 6404  df-frec 6490  df-pnf 8129  df-mnf 8130  df-xr 8131  df-ltxr 8132  df-le 8133  df-sub 8265  df-neg 8266  df-inn 9057  df-n0 9316  df-z 9393  df-uz 9669  df-fz 10151  df-fzo 10285  df-seqfrec 10615
This theorem is referenced by:  prodf1f  11929  fprodntrivap  11970  prod1dc  11972
  Copyright terms: Public domain W3C validator