| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > 3re | Unicode version | ||
| Description: The number 3 is real. (Contributed by NM, 27-May-1999.) | 
| Ref | Expression | 
|---|---|
| 3re | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-3 9050 | 
. 2
 | |
| 2 | 2re 9060 | 
. . 3
 | |
| 3 | 1re 8025 | 
. . 3
 | |
| 4 | 2, 3 | readdcli 8039 | 
. 2
 | 
| 5 | 1, 4 | eqeltri 2269 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-17 1540 ax-ial 1548 ax-ext 2178 ax-1re 7973 ax-addrcl 7976 | 
| This theorem depends on definitions: df-bi 117 df-cleq 2189 df-clel 2192 df-2 9049 df-3 9050 | 
| This theorem is referenced by: 3cn 9065 4re 9067 3ne0 9085 3ap0 9086 4pos 9087 1lt3 9162 3lt4 9163 2lt4 9164 3lt5 9167 3lt6 9172 2lt6 9173 3lt7 9178 2lt7 9179 3lt8 9185 2lt8 9186 3lt9 9193 2lt9 9194 1le3 9202 8th4div3 9210 halfpm6th 9211 3halfnz 9423 3lt10 9593 2lt10 9594 uzuzle23 9645 uz3m2nn 9647 nn01to3 9691 3rp 9734 fz0to4untppr 10199 expnass 10737 sqrt9 11213 ef01bndlem 11921 sin01bnd 11922 cos2bnd 11925 sin01gt0 11927 cos01gt0 11928 egt2lt3 11945 flodddiv4 12101 starvndxnmulrndx 12821 scandxnmulrndx 12833 vscandxnmulrndx 12838 ipndxnmulrndx 12851 tsetndxnmulrndx 12870 plendxnmulrndx 12884 dsndxnmulrndx 12895 slotsdifunifndx 12905 dveflem 14962 sincosq3sgn 15064 sincosq4sgn 15065 cosq23lt0 15069 coseq0q4123 15070 coseq00topi 15071 coseq0negpitopi 15072 tangtx 15074 sincos6thpi 15078 pigt3 15080 pige3 15081 cos02pilt1 15087 lgsdir2lem1 15269 2lgslem3 15342 ex-fl 15371 ex-gcd 15377 | 
| Copyright terms: Public domain | W3C validator |