| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3re | Unicode version | ||
| Description: The number 3 is real. (Contributed by NM, 27-May-1999.) |
| Ref | Expression |
|---|---|
| 3re |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-3 9170 |
. 2
| |
| 2 | 2re 9180 |
. . 3
| |
| 3 | 1re 8145 |
. . 3
| |
| 4 | 2, 3 | readdcli 8159 |
. 2
|
| 5 | 1, 4 | eqeltri 2302 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-4 1556 ax-17 1572 ax-ial 1580 ax-ext 2211 ax-1re 8093 ax-addrcl 8096 |
| This theorem depends on definitions: df-bi 117 df-cleq 2222 df-clel 2225 df-2 9169 df-3 9170 |
| This theorem is referenced by: 3cn 9185 4re 9187 3ne0 9205 3ap0 9206 4pos 9207 1lt3 9282 3lt4 9283 2lt4 9284 3lt5 9287 3lt6 9292 2lt6 9293 3lt7 9298 2lt7 9299 3lt8 9305 2lt8 9306 3lt9 9313 2lt9 9314 1le3 9322 8th4div3 9330 halfpm6th 9331 3halfnz 9544 3lt10 9714 2lt10 9715 uzuzle23 9766 uz3m2nn 9768 nn01to3 9812 3rp 9855 fz0to4untppr 10320 expnass 10867 sqrt9 11559 ef01bndlem 12267 sin01bnd 12268 cos2bnd 12271 sin01gt0 12273 cos01gt0 12274 egt2lt3 12291 flodddiv4 12447 starvndxnmulrndx 13177 scandxnmulrndx 13189 vscandxnmulrndx 13194 ipndxnmulrndx 13207 tsetndxnmulrndx 13226 plendxnmulrndx 13240 dsndxnmulrndx 13255 slotsdifunifndx 13265 dveflem 15400 sincosq3sgn 15502 sincosq4sgn 15503 cosq23lt0 15507 coseq0q4123 15508 coseq00topi 15509 coseq0negpitopi 15510 tangtx 15512 sincos6thpi 15516 pigt3 15518 pige3 15519 cos02pilt1 15525 lgsdir2lem1 15707 2lgslem3 15780 ex-fl 16089 ex-gcd 16095 |
| Copyright terms: Public domain | W3C validator |