| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3re | Unicode version | ||
| Description: The number 3 is real. (Contributed by NM, 27-May-1999.) |
| Ref | Expression |
|---|---|
| 3re |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-3 9067 |
. 2
| |
| 2 | 2re 9077 |
. . 3
| |
| 3 | 1re 8042 |
. . 3
| |
| 4 | 2, 3 | readdcli 8056 |
. 2
|
| 5 | 1, 4 | eqeltri 2269 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-17 1540 ax-ial 1548 ax-ext 2178 ax-1re 7990 ax-addrcl 7993 |
| This theorem depends on definitions: df-bi 117 df-cleq 2189 df-clel 2192 df-2 9066 df-3 9067 |
| This theorem is referenced by: 3cn 9082 4re 9084 3ne0 9102 3ap0 9103 4pos 9104 1lt3 9179 3lt4 9180 2lt4 9181 3lt5 9184 3lt6 9189 2lt6 9190 3lt7 9195 2lt7 9196 3lt8 9202 2lt8 9203 3lt9 9210 2lt9 9211 1le3 9219 8th4div3 9227 halfpm6th 9228 3halfnz 9440 3lt10 9610 2lt10 9611 uzuzle23 9662 uz3m2nn 9664 nn01to3 9708 3rp 9751 fz0to4untppr 10216 expnass 10754 sqrt9 11230 ef01bndlem 11938 sin01bnd 11939 cos2bnd 11942 sin01gt0 11944 cos01gt0 11945 egt2lt3 11962 flodddiv4 12118 starvndxnmulrndx 12846 scandxnmulrndx 12858 vscandxnmulrndx 12863 ipndxnmulrndx 12876 tsetndxnmulrndx 12895 plendxnmulrndx 12909 dsndxnmulrndx 12924 slotsdifunifndx 12934 dveflem 15046 sincosq3sgn 15148 sincosq4sgn 15149 cosq23lt0 15153 coseq0q4123 15154 coseq00topi 15155 coseq0negpitopi 15156 tangtx 15158 sincos6thpi 15162 pigt3 15164 pige3 15165 cos02pilt1 15171 lgsdir2lem1 15353 2lgslem3 15426 ex-fl 15455 ex-gcd 15461 |
| Copyright terms: Public domain | W3C validator |