![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3re | Unicode version |
Description: The number 3 is real. (Contributed by NM, 27-May-1999.) |
Ref | Expression |
---|---|
3re |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-3 9044 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 2re 9054 |
. . 3
![]() ![]() ![]() ![]() | |
3 | 1re 8020 |
. . 3
![]() ![]() ![]() ![]() | |
4 | 2, 3 | readdcli 8034 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | 1, 4 | eqeltri 2266 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-4 1521 ax-17 1537 ax-ial 1545 ax-ext 2175 ax-1re 7968 ax-addrcl 7971 |
This theorem depends on definitions: df-bi 117 df-cleq 2186 df-clel 2189 df-2 9043 df-3 9044 |
This theorem is referenced by: 3cn 9059 4re 9061 3ne0 9079 3ap0 9080 4pos 9081 1lt3 9156 3lt4 9157 2lt4 9158 3lt5 9161 3lt6 9166 2lt6 9167 3lt7 9172 2lt7 9173 3lt8 9179 2lt8 9180 3lt9 9187 2lt9 9188 1le3 9196 8th4div3 9204 halfpm6th 9205 3halfnz 9417 3lt10 9587 2lt10 9588 uzuzle23 9639 uz3m2nn 9641 nn01to3 9685 3rp 9728 fz0to4untppr 10193 expnass 10719 sqrt9 11195 ef01bndlem 11902 sin01bnd 11903 cos2bnd 11906 sin01gt0 11908 cos01gt0 11909 egt2lt3 11926 flodddiv4 12078 starvndxnmulrndx 12764 scandxnmulrndx 12776 vscandxnmulrndx 12781 ipndxnmulrndx 12794 tsetndxnmulrndx 12813 plendxnmulrndx 12827 dsndxnmulrndx 12838 slotsdifunifndx 12848 dveflem 14905 sincosq3sgn 15004 sincosq4sgn 15005 cosq23lt0 15009 coseq0q4123 15010 coseq00topi 15011 coseq0negpitopi 15012 tangtx 15014 sincos6thpi 15018 pigt3 15020 pige3 15021 cos02pilt1 15027 lgsdir2lem1 15185 2lgslem3 15258 ex-fl 15287 ex-gcd 15293 |
Copyright terms: Public domain | W3C validator |