| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3re | Unicode version | ||
| Description: The number 3 is real. (Contributed by NM, 27-May-1999.) |
| Ref | Expression |
|---|---|
| 3re |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-3 9098 |
. 2
| |
| 2 | 2re 9108 |
. . 3
| |
| 3 | 1re 8073 |
. . 3
| |
| 4 | 2, 3 | readdcli 8087 |
. 2
|
| 5 | 1, 4 | eqeltri 2278 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-4 1533 ax-17 1549 ax-ial 1557 ax-ext 2187 ax-1re 8021 ax-addrcl 8024 |
| This theorem depends on definitions: df-bi 117 df-cleq 2198 df-clel 2201 df-2 9097 df-3 9098 |
| This theorem is referenced by: 3cn 9113 4re 9115 3ne0 9133 3ap0 9134 4pos 9135 1lt3 9210 3lt4 9211 2lt4 9212 3lt5 9215 3lt6 9220 2lt6 9221 3lt7 9226 2lt7 9227 3lt8 9233 2lt8 9234 3lt9 9241 2lt9 9242 1le3 9250 8th4div3 9258 halfpm6th 9259 3halfnz 9472 3lt10 9642 2lt10 9643 uzuzle23 9694 uz3m2nn 9696 nn01to3 9740 3rp 9783 fz0to4untppr 10248 expnass 10792 sqrt9 11392 ef01bndlem 12100 sin01bnd 12101 cos2bnd 12104 sin01gt0 12106 cos01gt0 12107 egt2lt3 12124 flodddiv4 12280 starvndxnmulrndx 13009 scandxnmulrndx 13021 vscandxnmulrndx 13026 ipndxnmulrndx 13039 tsetndxnmulrndx 13058 plendxnmulrndx 13072 dsndxnmulrndx 13087 slotsdifunifndx 13097 dveflem 15231 sincosq3sgn 15333 sincosq4sgn 15334 cosq23lt0 15338 coseq0q4123 15339 coseq00topi 15340 coseq0negpitopi 15341 tangtx 15343 sincos6thpi 15347 pigt3 15349 pige3 15350 cos02pilt1 15356 lgsdir2lem1 15538 2lgslem3 15611 ex-fl 15698 ex-gcd 15704 |
| Copyright terms: Public domain | W3C validator |