Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > difelfzle | Unicode version |
Description: The difference of two integers from a finite set of sequential nonnegative integers is also element of this finite set of sequential integers. (Contributed by Alexander van der Vekens, 12-Jun-2018.) |
Ref | Expression |
---|---|
difelfzle |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfznn0 10070 | . . . . 5 | |
2 | elfznn0 10070 | . . . . 5 | |
3 | nn0z 9232 | . . . . . . . . 9 | |
4 | nn0z 9232 | . . . . . . . . 9 | |
5 | zsubcl 9253 | . . . . . . . . 9 | |
6 | 3, 4, 5 | syl2anr 288 | . . . . . . . 8 |
7 | 6 | adantr 274 | . . . . . . 7 |
8 | nn0re 9144 | . . . . . . . . 9 | |
9 | nn0re 9144 | . . . . . . . . 9 | |
10 | subge0 8394 | . . . . . . . . 9 | |
11 | 8, 9, 10 | syl2anr 288 | . . . . . . . 8 |
12 | 11 | biimpar 295 | . . . . . . 7 |
13 | 7, 12 | jca 304 | . . . . . 6 |
14 | 13 | exp31 362 | . . . . 5 |
15 | 1, 2, 14 | syl2im 38 | . . . 4 |
16 | 15 | 3imp 1188 | . . 3 |
17 | elnn0z 9225 | . . 3 | |
18 | 16, 17 | sylibr 133 | . 2 |
19 | elfz3nn0 10071 | . . 3 | |
20 | 19 | 3ad2ant1 1013 | . 2 |
21 | elfz2nn0 10068 | . . . . . 6 | |
22 | 8 | 3ad2ant1 1013 | . . . . . . . . 9 |
23 | resubcl 8183 | . . . . . . . . 9 | |
24 | 22, 9, 23 | syl2an 287 | . . . . . . . 8 |
25 | 22 | adantr 274 | . . . . . . . 8 |
26 | nn0re 9144 | . . . . . . . . . 10 | |
27 | 26 | 3ad2ant2 1014 | . . . . . . . . 9 |
28 | 27 | adantr 274 | . . . . . . . 8 |
29 | nn0ge0 9160 | . . . . . . . . . 10 | |
30 | 29 | adantl 275 | . . . . . . . . 9 |
31 | subge02 8397 | . . . . . . . . . 10 | |
32 | 22, 9, 31 | syl2an 287 | . . . . . . . . 9 |
33 | 30, 32 | mpbid 146 | . . . . . . . 8 |
34 | simpl3 997 | . . . . . . . 8 | |
35 | 24, 25, 28, 33, 34 | letrd 8043 | . . . . . . 7 |
36 | 35 | ex 114 | . . . . . 6 |
37 | 21, 36 | sylbi 120 | . . . . 5 |
38 | 1, 37 | syl5com 29 | . . . 4 |
39 | 38 | a1dd 48 | . . 3 |
40 | 39 | 3imp 1188 | . 2 |
41 | elfz2nn0 10068 | . 2 | |
42 | 18, 20, 40, 41 | syl3anbrc 1176 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 w3a 973 wcel 2141 class class class wbr 3989 (class class class)co 5853 cr 7773 cc0 7774 cle 7955 cmin 8090 cn0 9135 cz 9212 cfz 9965 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-addcom 7874 ax-addass 7876 ax-distr 7878 ax-i2m1 7879 ax-0lt1 7880 ax-0id 7882 ax-rnegex 7883 ax-cnre 7885 ax-pre-ltirr 7886 ax-pre-ltwlin 7887 ax-pre-lttrn 7888 ax-pre-ltadd 7890 |
This theorem depends on definitions: df-bi 116 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-fv 5206 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-sub 8092 df-neg 8093 df-inn 8879 df-n0 9136 df-z 9213 df-uz 9488 df-fz 9966 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |