ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  difelfzle Unicode version

Theorem difelfzle 9942
Description: The difference of two integers from a finite set of sequential nonnegative integers is also element of this finite set of sequential integers. (Contributed by Alexander van der Vekens, 12-Jun-2018.)
Assertion
Ref Expression
difelfzle  |-  ( ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N )  /\  K  <_  M )  -> 
( M  -  K
)  e.  ( 0 ... N ) )

Proof of Theorem difelfzle
StepHypRef Expression
1 elfznn0 9925 . . . . 5  |-  ( K  e.  ( 0 ... N )  ->  K  e.  NN0 )
2 elfznn0 9925 . . . . 5  |-  ( M  e.  ( 0 ... N )  ->  M  e.  NN0 )
3 nn0z 9098 . . . . . . . . 9  |-  ( M  e.  NN0  ->  M  e.  ZZ )
4 nn0z 9098 . . . . . . . . 9  |-  ( K  e.  NN0  ->  K  e.  ZZ )
5 zsubcl 9119 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  K  e.  ZZ )  ->  ( M  -  K
)  e.  ZZ )
63, 4, 5syl2anr 288 . . . . . . . 8  |-  ( ( K  e.  NN0  /\  M  e.  NN0 )  -> 
( M  -  K
)  e.  ZZ )
76adantr 274 . . . . . . 7  |-  ( ( ( K  e.  NN0  /\  M  e.  NN0 )  /\  K  <_  M )  ->  ( M  -  K )  e.  ZZ )
8 nn0re 9010 . . . . . . . . 9  |-  ( M  e.  NN0  ->  M  e.  RR )
9 nn0re 9010 . . . . . . . . 9  |-  ( K  e.  NN0  ->  K  e.  RR )
10 subge0 8261 . . . . . . . . 9  |-  ( ( M  e.  RR  /\  K  e.  RR )  ->  ( 0  <_  ( M  -  K )  <->  K  <_  M ) )
118, 9, 10syl2anr 288 . . . . . . . 8  |-  ( ( K  e.  NN0  /\  M  e.  NN0 )  -> 
( 0  <_  ( M  -  K )  <->  K  <_  M ) )
1211biimpar 295 . . . . . . 7  |-  ( ( ( K  e.  NN0  /\  M  e.  NN0 )  /\  K  <_  M )  ->  0  <_  ( M  -  K )
)
137, 12jca 304 . . . . . 6  |-  ( ( ( K  e.  NN0  /\  M  e.  NN0 )  /\  K  <_  M )  ->  ( ( M  -  K )  e.  ZZ  /\  0  <_ 
( M  -  K
) ) )
1413exp31 362 . . . . 5  |-  ( K  e.  NN0  ->  ( M  e.  NN0  ->  ( K  <_  M  ->  (
( M  -  K
)  e.  ZZ  /\  0  <_  ( M  -  K ) ) ) ) )
151, 2, 14syl2im 38 . . . 4  |-  ( K  e.  ( 0 ... N )  ->  ( M  e.  ( 0 ... N )  -> 
( K  <_  M  ->  ( ( M  -  K )  e.  ZZ  /\  0  <_  ( M  -  K ) ) ) ) )
16153imp 1176 . . 3  |-  ( ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N )  /\  K  <_  M )  -> 
( ( M  -  K )  e.  ZZ  /\  0  <_  ( M  -  K ) ) )
17 elnn0z 9091 . . 3  |-  ( ( M  -  K )  e.  NN0  <->  ( ( M  -  K )  e.  ZZ  /\  0  <_ 
( M  -  K
) ) )
1816, 17sylibr 133 . 2  |-  ( ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N )  /\  K  <_  M )  -> 
( M  -  K
)  e.  NN0 )
19 elfz3nn0 9926 . . 3  |-  ( K  e.  ( 0 ... N )  ->  N  e.  NN0 )
20193ad2ant1 1003 . 2  |-  ( ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N )  /\  K  <_  M )  ->  N  e.  NN0 )
21 elfz2nn0 9923 . . . . . 6  |-  ( M  e.  ( 0 ... N )  <->  ( M  e.  NN0  /\  N  e. 
NN0  /\  M  <_  N ) )
2283ad2ant1 1003 . . . . . . . . 9  |-  ( ( M  e.  NN0  /\  N  e.  NN0  /\  M  <_  N )  ->  M  e.  RR )
23 resubcl 8050 . . . . . . . . 9  |-  ( ( M  e.  RR  /\  K  e.  RR )  ->  ( M  -  K
)  e.  RR )
2422, 9, 23syl2an 287 . . . . . . . 8  |-  ( ( ( M  e.  NN0  /\  N  e.  NN0  /\  M  <_  N )  /\  K  e.  NN0 )  -> 
( M  -  K
)  e.  RR )
2522adantr 274 . . . . . . . 8  |-  ( ( ( M  e.  NN0  /\  N  e.  NN0  /\  M  <_  N )  /\  K  e.  NN0 )  ->  M  e.  RR )
26 nn0re 9010 . . . . . . . . . 10  |-  ( N  e.  NN0  ->  N  e.  RR )
27263ad2ant2 1004 . . . . . . . . 9  |-  ( ( M  e.  NN0  /\  N  e.  NN0  /\  M  <_  N )  ->  N  e.  RR )
2827adantr 274 . . . . . . . 8  |-  ( ( ( M  e.  NN0  /\  N  e.  NN0  /\  M  <_  N )  /\  K  e.  NN0 )  ->  N  e.  RR )
29 nn0ge0 9026 . . . . . . . . . 10  |-  ( K  e.  NN0  ->  0  <_  K )
3029adantl 275 . . . . . . . . 9  |-  ( ( ( M  e.  NN0  /\  N  e.  NN0  /\  M  <_  N )  /\  K  e.  NN0 )  -> 
0  <_  K )
31 subge02 8264 . . . . . . . . . 10  |-  ( ( M  e.  RR  /\  K  e.  RR )  ->  ( 0  <_  K  <->  ( M  -  K )  <_  M ) )
3222, 9, 31syl2an 287 . . . . . . . . 9  |-  ( ( ( M  e.  NN0  /\  N  e.  NN0  /\  M  <_  N )  /\  K  e.  NN0 )  -> 
( 0  <_  K  <->  ( M  -  K )  <_  M ) )
3330, 32mpbid 146 . . . . . . . 8  |-  ( ( ( M  e.  NN0  /\  N  e.  NN0  /\  M  <_  N )  /\  K  e.  NN0 )  -> 
( M  -  K
)  <_  M )
34 simpl3 987 . . . . . . . 8  |-  ( ( ( M  e.  NN0  /\  N  e.  NN0  /\  M  <_  N )  /\  K  e.  NN0 )  ->  M  <_  N )
3524, 25, 28, 33, 34letrd 7910 . . . . . . 7  |-  ( ( ( M  e.  NN0  /\  N  e.  NN0  /\  M  <_  N )  /\  K  e.  NN0 )  -> 
( M  -  K
)  <_  N )
3635ex 114 . . . . . 6  |-  ( ( M  e.  NN0  /\  N  e.  NN0  /\  M  <_  N )  ->  ( K  e.  NN0  ->  ( M  -  K )  <_  N ) )
3721, 36sylbi 120 . . . . 5  |-  ( M  e.  ( 0 ... N )  ->  ( K  e.  NN0  ->  ( M  -  K )  <_  N ) )
381, 37syl5com 29 . . . 4  |-  ( K  e.  ( 0 ... N )  ->  ( M  e.  ( 0 ... N )  -> 
( M  -  K
)  <_  N )
)
3938a1dd 48 . . 3  |-  ( K  e.  ( 0 ... N )  ->  ( M  e.  ( 0 ... N )  -> 
( K  <_  M  ->  ( M  -  K
)  <_  N )
) )
40393imp 1176 . 2  |-  ( ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N )  /\  K  <_  M )  -> 
( M  -  K
)  <_  N )
41 elfz2nn0 9923 . 2  |-  ( ( M  -  K )  e.  ( 0 ... N )  <->  ( ( M  -  K )  e.  NN0  /\  N  e. 
NN0  /\  ( M  -  K )  <_  N
) )
4218, 20, 40, 41syl3anbrc 1166 1  |-  ( ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N )  /\  K  <_  M )  -> 
( M  -  K
)  e.  ( 0 ... N ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 963    e. wcel 1481   class class class wbr 3937  (class class class)co 5782   RRcr 7643   0cc0 7644    <_ cle 7825    - cmin 7957   NN0cn0 9001   ZZcz 9078   ...cfz 9821
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-addcom 7744  ax-addass 7746  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-0id 7752  ax-rnegex 7753  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-ltadd 7760
This theorem depends on definitions:  df-bi 116  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-br 3938  df-opab 3998  df-mpt 3999  df-id 4223  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-fv 5139  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-inn 8745  df-n0 9002  df-z 9079  df-uz 9351  df-fz 9822
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator