ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  difelfzle Unicode version

Theorem difelfzle 9510
Description: The difference of two integers from a finite set of sequential nonnegative integers is also element of this finite set of sequential integers. (Contributed by Alexander van der Vekens, 12-Jun-2018.)
Assertion
Ref Expression
difelfzle  |-  ( ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N )  /\  K  <_  M )  -> 
( M  -  K
)  e.  ( 0 ... N ) )

Proof of Theorem difelfzle
StepHypRef Expression
1 elfznn0 9495 . . . . 5  |-  ( K  e.  ( 0 ... N )  ->  K  e.  NN0 )
2 elfznn0 9495 . . . . 5  |-  ( M  e.  ( 0 ... N )  ->  M  e.  NN0 )
3 nn0z 8740 . . . . . . . . 9  |-  ( M  e.  NN0  ->  M  e.  ZZ )
4 nn0z 8740 . . . . . . . . 9  |-  ( K  e.  NN0  ->  K  e.  ZZ )
5 zsubcl 8761 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  K  e.  ZZ )  ->  ( M  -  K
)  e.  ZZ )
63, 4, 5syl2anr 284 . . . . . . . 8  |-  ( ( K  e.  NN0  /\  M  e.  NN0 )  -> 
( M  -  K
)  e.  ZZ )
76adantr 270 . . . . . . 7  |-  ( ( ( K  e.  NN0  /\  M  e.  NN0 )  /\  K  <_  M )  ->  ( M  -  K )  e.  ZZ )
8 nn0re 8652 . . . . . . . . 9  |-  ( M  e.  NN0  ->  M  e.  RR )
9 nn0re 8652 . . . . . . . . 9  |-  ( K  e.  NN0  ->  K  e.  RR )
10 subge0 7932 . . . . . . . . 9  |-  ( ( M  e.  RR  /\  K  e.  RR )  ->  ( 0  <_  ( M  -  K )  <->  K  <_  M ) )
118, 9, 10syl2anr 284 . . . . . . . 8  |-  ( ( K  e.  NN0  /\  M  e.  NN0 )  -> 
( 0  <_  ( M  -  K )  <->  K  <_  M ) )
1211biimpar 291 . . . . . . 7  |-  ( ( ( K  e.  NN0  /\  M  e.  NN0 )  /\  K  <_  M )  ->  0  <_  ( M  -  K )
)
137, 12jca 300 . . . . . 6  |-  ( ( ( K  e.  NN0  /\  M  e.  NN0 )  /\  K  <_  M )  ->  ( ( M  -  K )  e.  ZZ  /\  0  <_ 
( M  -  K
) ) )
1413exp31 356 . . . . 5  |-  ( K  e.  NN0  ->  ( M  e.  NN0  ->  ( K  <_  M  ->  (
( M  -  K
)  e.  ZZ  /\  0  <_  ( M  -  K ) ) ) ) )
151, 2, 14syl2im 38 . . . 4  |-  ( K  e.  ( 0 ... N )  ->  ( M  e.  ( 0 ... N )  -> 
( K  <_  M  ->  ( ( M  -  K )  e.  ZZ  /\  0  <_  ( M  -  K ) ) ) ) )
16153imp 1137 . . 3  |-  ( ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N )  /\  K  <_  M )  -> 
( ( M  -  K )  e.  ZZ  /\  0  <_  ( M  -  K ) ) )
17 elnn0z 8733 . . 3  |-  ( ( M  -  K )  e.  NN0  <->  ( ( M  -  K )  e.  ZZ  /\  0  <_ 
( M  -  K
) ) )
1816, 17sylibr 132 . 2  |-  ( ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N )  /\  K  <_  M )  -> 
( M  -  K
)  e.  NN0 )
19 elfz3nn0 9496 . . 3  |-  ( K  e.  ( 0 ... N )  ->  N  e.  NN0 )
20193ad2ant1 964 . 2  |-  ( ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N )  /\  K  <_  M )  ->  N  e.  NN0 )
21 elfz2nn0 9493 . . . . . 6  |-  ( M  e.  ( 0 ... N )  <->  ( M  e.  NN0  /\  N  e. 
NN0  /\  M  <_  N ) )
2283ad2ant1 964 . . . . . . . . 9  |-  ( ( M  e.  NN0  /\  N  e.  NN0  /\  M  <_  N )  ->  M  e.  RR )
23 resubcl 7725 . . . . . . . . 9  |-  ( ( M  e.  RR  /\  K  e.  RR )  ->  ( M  -  K
)  e.  RR )
2422, 9, 23syl2an 283 . . . . . . . 8  |-  ( ( ( M  e.  NN0  /\  N  e.  NN0  /\  M  <_  N )  /\  K  e.  NN0 )  -> 
( M  -  K
)  e.  RR )
2522adantr 270 . . . . . . . 8  |-  ( ( ( M  e.  NN0  /\  N  e.  NN0  /\  M  <_  N )  /\  K  e.  NN0 )  ->  M  e.  RR )
26 nn0re 8652 . . . . . . . . . 10  |-  ( N  e.  NN0  ->  N  e.  RR )
27263ad2ant2 965 . . . . . . . . 9  |-  ( ( M  e.  NN0  /\  N  e.  NN0  /\  M  <_  N )  ->  N  e.  RR )
2827adantr 270 . . . . . . . 8  |-  ( ( ( M  e.  NN0  /\  N  e.  NN0  /\  M  <_  N )  /\  K  e.  NN0 )  ->  N  e.  RR )
29 nn0ge0 8668 . . . . . . . . . 10  |-  ( K  e.  NN0  ->  0  <_  K )
3029adantl 271 . . . . . . . . 9  |-  ( ( ( M  e.  NN0  /\  N  e.  NN0  /\  M  <_  N )  /\  K  e.  NN0 )  -> 
0  <_  K )
31 subge02 7935 . . . . . . . . . 10  |-  ( ( M  e.  RR  /\  K  e.  RR )  ->  ( 0  <_  K  <->  ( M  -  K )  <_  M ) )
3222, 9, 31syl2an 283 . . . . . . . . 9  |-  ( ( ( M  e.  NN0  /\  N  e.  NN0  /\  M  <_  N )  /\  K  e.  NN0 )  -> 
( 0  <_  K  <->  ( M  -  K )  <_  M ) )
3330, 32mpbid 145 . . . . . . . 8  |-  ( ( ( M  e.  NN0  /\  N  e.  NN0  /\  M  <_  N )  /\  K  e.  NN0 )  -> 
( M  -  K
)  <_  M )
34 simpl3 948 . . . . . . . 8  |-  ( ( ( M  e.  NN0  /\  N  e.  NN0  /\  M  <_  N )  /\  K  e.  NN0 )  ->  M  <_  N )
3524, 25, 28, 33, 34letrd 7586 . . . . . . 7  |-  ( ( ( M  e.  NN0  /\  N  e.  NN0  /\  M  <_  N )  /\  K  e.  NN0 )  -> 
( M  -  K
)  <_  N )
3635ex 113 . . . . . 6  |-  ( ( M  e.  NN0  /\  N  e.  NN0  /\  M  <_  N )  ->  ( K  e.  NN0  ->  ( M  -  K )  <_  N ) )
3721, 36sylbi 119 . . . . 5  |-  ( M  e.  ( 0 ... N )  ->  ( K  e.  NN0  ->  ( M  -  K )  <_  N ) )
381, 37syl5com 29 . . . 4  |-  ( K  e.  ( 0 ... N )  ->  ( M  e.  ( 0 ... N )  -> 
( M  -  K
)  <_  N )
)
3938a1dd 47 . . 3  |-  ( K  e.  ( 0 ... N )  ->  ( M  e.  ( 0 ... N )  -> 
( K  <_  M  ->  ( M  -  K
)  <_  N )
) )
40393imp 1137 . 2  |-  ( ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N )  /\  K  <_  M )  -> 
( M  -  K
)  <_  N )
41 elfz2nn0 9493 . 2  |-  ( ( M  -  K )  e.  ( 0 ... N )  <->  ( ( M  -  K )  e.  NN0  /\  N  e. 
NN0  /\  ( M  -  K )  <_  N
) )
4218, 20, 40, 41syl3anbrc 1127 1  |-  ( ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N )  /\  K  <_  M )  -> 
( M  -  K
)  e.  ( 0 ... N ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    /\ w3a 924    e. wcel 1438   class class class wbr 3837  (class class class)co 5634   RRcr 7328   0cc0 7329    <_ cle 7502    - cmin 7632   NN0cn0 8643   ZZcz 8720   ...cfz 9393
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3949  ax-pow 4001  ax-pr 4027  ax-un 4251  ax-setind 4343  ax-cnex 7415  ax-resscn 7416  ax-1cn 7417  ax-1re 7418  ax-icn 7419  ax-addcl 7420  ax-addrcl 7421  ax-mulcl 7422  ax-addcom 7424  ax-addass 7426  ax-distr 7428  ax-i2m1 7429  ax-0lt1 7430  ax-0id 7432  ax-rnegex 7433  ax-cnre 7435  ax-pre-ltirr 7436  ax-pre-ltwlin 7437  ax-pre-lttrn 7438  ax-pre-ltadd 7440
This theorem depends on definitions:  df-bi 115  df-3or 925  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-nel 2351  df-ral 2364  df-rex 2365  df-reu 2366  df-rab 2368  df-v 2621  df-sbc 2839  df-dif 2999  df-un 3001  df-in 3003  df-ss 3010  df-pw 3427  df-sn 3447  df-pr 3448  df-op 3450  df-uni 3649  df-int 3684  df-br 3838  df-opab 3892  df-mpt 3893  df-id 4111  df-xp 4434  df-rel 4435  df-cnv 4436  df-co 4437  df-dm 4438  df-rn 4439  df-res 4440  df-ima 4441  df-iota 4967  df-fun 5004  df-fn 5005  df-f 5006  df-fv 5010  df-riota 5590  df-ov 5637  df-oprab 5638  df-mpt2 5639  df-pnf 7503  df-mnf 7504  df-xr 7505  df-ltxr 7506  df-le 7507  df-sub 7634  df-neg 7635  df-inn 8395  df-n0 8644  df-z 8721  df-uz 8989  df-fz 9394
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator