ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addext Unicode version

Theorem addext 8765
Description: Strong extensionality for addition. Given excluded middle, apartness would be equivalent to negated equality and this would follow readily (for all operations) from oveq12 6016. For us, it is proved a different way. (Contributed by Jim Kingdon, 15-Feb-2020.)
Assertion
Ref Expression
addext  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( ( A  +  B ) #  ( C  +  D )  ->  ( A #  C  \/  B #  D ) ) )

Proof of Theorem addext
StepHypRef Expression
1 simpll 527 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  ->  A  e.  CC )
2 simplr 528 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  ->  B  e.  CC )
31, 2addcld 8174 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( A  +  B
)  e.  CC )
4 simprl 529 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  ->  C  e.  CC )
5 simprr 531 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  ->  D  e.  CC )
64, 5addcld 8174 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( C  +  D
)  e.  CC )
74, 2addcld 8174 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( C  +  B
)  e.  CC )
8 apcotr 8762 . . 3  |-  ( ( ( A  +  B
)  e.  CC  /\  ( C  +  D
)  e.  CC  /\  ( C  +  B
)  e.  CC )  ->  ( ( A  +  B ) #  ( C  +  D )  ->  ( ( A  +  B ) #  ( C  +  B )  \/  ( C  +  D ) #  ( C  +  B ) ) ) )
93, 6, 7, 8syl3anc 1271 . 2  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( ( A  +  B ) #  ( C  +  D )  ->  (
( A  +  B
) #  ( C  +  B )  \/  ( C  +  D ) #  ( C  +  B
) ) ) )
10 apadd1 8763 . . . 4  |-  ( ( A  e.  CC  /\  C  e.  CC  /\  B  e.  CC )  ->  ( A #  C  <->  ( A  +  B ) #  ( C  +  B ) ) )
111, 4, 2, 10syl3anc 1271 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( A #  C  <->  ( A  +  B ) #  ( C  +  B ) ) )
12 apadd2 8764 . . . . 5  |-  ( ( B  e.  CC  /\  D  e.  CC  /\  C  e.  CC )  ->  ( B #  D  <->  ( C  +  B ) #  ( C  +  D ) ) )
132, 5, 4, 12syl3anc 1271 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( B #  D  <->  ( C  +  B ) #  ( C  +  D ) ) )
14 apsym 8761 . . . . 5  |-  ( ( ( C  +  B
)  e.  CC  /\  ( C  +  D
)  e.  CC )  ->  ( ( C  +  B ) #  ( C  +  D )  <-> 
( C  +  D
) #  ( C  +  B ) ) )
157, 6, 14syl2anc 411 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( ( C  +  B ) #  ( C  +  D )  <->  ( C  +  D ) #  ( C  +  B ) ) )
1613, 15bitrd 188 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( B #  D  <->  ( C  +  D ) #  ( C  +  B ) ) )
1711, 16orbi12d 798 . 2  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( ( A #  C  \/  B #  D )  <->  ( ( A  +  B
) #  ( C  +  B )  \/  ( C  +  D ) #  ( C  +  B
) ) ) )
189, 17sylibrd 169 1  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( ( A  +  B ) #  ( C  +  D )  ->  ( A #  C  \/  B #  D ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 713    e. wcel 2200   class class class wbr 4083  (class class class)co 6007   CCcc 8005    + caddc 8010   # cap 8736
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-mulrcl 8106  ax-addcom 8107  ax-mulcom 8108  ax-addass 8109  ax-mulass 8110  ax-distr 8111  ax-i2m1 8112  ax-0lt1 8113  ax-1rid 8114  ax-0id 8115  ax-rnegex 8116  ax-precex 8117  ax-cnre 8118  ax-pre-ltirr 8119  ax-pre-ltwlin 8120  ax-pre-lttrn 8121  ax-pre-apti 8122  ax-pre-ltadd 8123  ax-pre-mulgt0 8124
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-iota 5278  df-fun 5320  df-fv 5326  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-pnf 8191  df-mnf 8192  df-ltxr 8194  df-sub 8327  df-neg 8328  df-reap 8730  df-ap 8737
This theorem is referenced by:  mulext1  8767  abs00ap  11581  absext  11582
  Copyright terms: Public domain W3C validator