ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addext Unicode version

Theorem addext 8150
Description: Strong extensionality for addition. Given excluded middle, apartness would be equivalent to negated equality and this would follow readily (for all operations) from oveq12 5677. For us, it is proved a different way. (Contributed by Jim Kingdon, 15-Feb-2020.)
Assertion
Ref Expression
addext  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( ( A  +  B ) #  ( C  +  D )  ->  ( A #  C  \/  B #  D ) ) )

Proof of Theorem addext
StepHypRef Expression
1 simpll 497 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  ->  A  e.  CC )
2 simplr 498 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  ->  B  e.  CC )
31, 2addcld 7570 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( A  +  B
)  e.  CC )
4 simprl 499 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  ->  C  e.  CC )
5 simprr 500 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  ->  D  e.  CC )
64, 5addcld 7570 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( C  +  D
)  e.  CC )
74, 2addcld 7570 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( C  +  B
)  e.  CC )
8 apcotr 8147 . . 3  |-  ( ( ( A  +  B
)  e.  CC  /\  ( C  +  D
)  e.  CC  /\  ( C  +  B
)  e.  CC )  ->  ( ( A  +  B ) #  ( C  +  D )  ->  ( ( A  +  B ) #  ( C  +  B )  \/  ( C  +  D ) #  ( C  +  B ) ) ) )
93, 6, 7, 8syl3anc 1175 . 2  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( ( A  +  B ) #  ( C  +  D )  ->  (
( A  +  B
) #  ( C  +  B )  \/  ( C  +  D ) #  ( C  +  B
) ) ) )
10 apadd1 8148 . . . 4  |-  ( ( A  e.  CC  /\  C  e.  CC  /\  B  e.  CC )  ->  ( A #  C  <->  ( A  +  B ) #  ( C  +  B ) ) )
111, 4, 2, 10syl3anc 1175 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( A #  C  <->  ( A  +  B ) #  ( C  +  B ) ) )
12 apadd2 8149 . . . . 5  |-  ( ( B  e.  CC  /\  D  e.  CC  /\  C  e.  CC )  ->  ( B #  D  <->  ( C  +  B ) #  ( C  +  D ) ) )
132, 5, 4, 12syl3anc 1175 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( B #  D  <->  ( C  +  B ) #  ( C  +  D ) ) )
14 apsym 8146 . . . . 5  |-  ( ( ( C  +  B
)  e.  CC  /\  ( C  +  D
)  e.  CC )  ->  ( ( C  +  B ) #  ( C  +  D )  <-> 
( C  +  D
) #  ( C  +  B ) ) )
157, 6, 14syl2anc 404 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( ( C  +  B ) #  ( C  +  D )  <->  ( C  +  D ) #  ( C  +  B ) ) )
1613, 15bitrd 187 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( B #  D  <->  ( C  +  D ) #  ( C  +  B ) ) )
1711, 16orbi12d 743 . 2  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( ( A #  C  \/  B #  D )  <->  ( ( A  +  B
) #  ( C  +  B )  \/  ( C  +  D ) #  ( C  +  B
) ) ) )
189, 17sylibrd 168 1  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( ( A  +  B ) #  ( C  +  D )  ->  ( A #  C  \/  B #  D ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 665    e. wcel 1439   class class class wbr 3853  (class class class)co 5668   CCcc 7411    + caddc 7416   # cap 8121
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 580  ax-in2 581  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-13 1450  ax-14 1451  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-sep 3965  ax-pow 4017  ax-pr 4047  ax-un 4271  ax-setind 4368  ax-cnex 7499  ax-resscn 7500  ax-1cn 7501  ax-1re 7502  ax-icn 7503  ax-addcl 7504  ax-addrcl 7505  ax-mulcl 7506  ax-mulrcl 7507  ax-addcom 7508  ax-mulcom 7509  ax-addass 7510  ax-mulass 7511  ax-distr 7512  ax-i2m1 7513  ax-0lt1 7514  ax-1rid 7515  ax-0id 7516  ax-rnegex 7517  ax-precex 7518  ax-cnre 7519  ax-pre-ltirr 7520  ax-pre-ltwlin 7521  ax-pre-lttrn 7522  ax-pre-apti 7523  ax-pre-ltadd 7524  ax-pre-mulgt0 7525
This theorem depends on definitions:  df-bi 116  df-3an 927  df-tru 1293  df-fal 1296  df-nf 1396  df-sb 1694  df-eu 1952  df-mo 1953  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ne 2257  df-nel 2352  df-ral 2365  df-rex 2366  df-reu 2367  df-rab 2369  df-v 2624  df-sbc 2844  df-dif 3004  df-un 3006  df-in 3008  df-ss 3015  df-pw 3437  df-sn 3458  df-pr 3459  df-op 3461  df-uni 3662  df-br 3854  df-opab 3908  df-id 4131  df-xp 4460  df-rel 4461  df-cnv 4462  df-co 4463  df-dm 4464  df-iota 4995  df-fun 5032  df-fv 5038  df-riota 5624  df-ov 5671  df-oprab 5672  df-mpt2 5673  df-pnf 7587  df-mnf 7588  df-ltxr 7590  df-sub 7718  df-neg 7719  df-reap 8115  df-ap 8122
This theorem is referenced by:  mulext1  8152  abs00ap  10558  absext  10559
  Copyright terms: Public domain W3C validator