![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > addext | GIF version |
Description: Strong extensionality for addition. Given excluded middle, apartness would be equivalent to negated equality and this would follow readily (for all operations) from oveq12 5928. For us, it is proved a different way. (Contributed by Jim Kingdon, 15-Feb-2020.) |
Ref | Expression |
---|---|
addext | ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 + 𝐵) # (𝐶 + 𝐷) → (𝐴 # 𝐶 ∨ 𝐵 # 𝐷))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpll 527 | . . . 4 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → 𝐴 ∈ ℂ) | |
2 | simplr 528 | . . . 4 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → 𝐵 ∈ ℂ) | |
3 | 1, 2 | addcld 8041 | . . 3 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (𝐴 + 𝐵) ∈ ℂ) |
4 | simprl 529 | . . . 4 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → 𝐶 ∈ ℂ) | |
5 | simprr 531 | . . . 4 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → 𝐷 ∈ ℂ) | |
6 | 4, 5 | addcld 8041 | . . 3 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (𝐶 + 𝐷) ∈ ℂ) |
7 | 4, 2 | addcld 8041 | . . 3 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (𝐶 + 𝐵) ∈ ℂ) |
8 | apcotr 8628 | . . 3 ⊢ (((𝐴 + 𝐵) ∈ ℂ ∧ (𝐶 + 𝐷) ∈ ℂ ∧ (𝐶 + 𝐵) ∈ ℂ) → ((𝐴 + 𝐵) # (𝐶 + 𝐷) → ((𝐴 + 𝐵) # (𝐶 + 𝐵) ∨ (𝐶 + 𝐷) # (𝐶 + 𝐵)))) | |
9 | 3, 6, 7, 8 | syl3anc 1249 | . 2 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 + 𝐵) # (𝐶 + 𝐷) → ((𝐴 + 𝐵) # (𝐶 + 𝐵) ∨ (𝐶 + 𝐷) # (𝐶 + 𝐵)))) |
10 | apadd1 8629 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 # 𝐶 ↔ (𝐴 + 𝐵) # (𝐶 + 𝐵))) | |
11 | 1, 4, 2, 10 | syl3anc 1249 | . . 3 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (𝐴 # 𝐶 ↔ (𝐴 + 𝐵) # (𝐶 + 𝐵))) |
12 | apadd2 8630 | . . . . 5 ⊢ ((𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐵 # 𝐷 ↔ (𝐶 + 𝐵) # (𝐶 + 𝐷))) | |
13 | 2, 5, 4, 12 | syl3anc 1249 | . . . 4 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (𝐵 # 𝐷 ↔ (𝐶 + 𝐵) # (𝐶 + 𝐷))) |
14 | apsym 8627 | . . . . 5 ⊢ (((𝐶 + 𝐵) ∈ ℂ ∧ (𝐶 + 𝐷) ∈ ℂ) → ((𝐶 + 𝐵) # (𝐶 + 𝐷) ↔ (𝐶 + 𝐷) # (𝐶 + 𝐵))) | |
15 | 7, 6, 14 | syl2anc 411 | . . . 4 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐶 + 𝐵) # (𝐶 + 𝐷) ↔ (𝐶 + 𝐷) # (𝐶 + 𝐵))) |
16 | 13, 15 | bitrd 188 | . . 3 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (𝐵 # 𝐷 ↔ (𝐶 + 𝐷) # (𝐶 + 𝐵))) |
17 | 11, 16 | orbi12d 794 | . 2 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 # 𝐶 ∨ 𝐵 # 𝐷) ↔ ((𝐴 + 𝐵) # (𝐶 + 𝐵) ∨ (𝐶 + 𝐷) # (𝐶 + 𝐵)))) |
18 | 9, 17 | sylibrd 169 | 1 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 + 𝐵) # (𝐶 + 𝐷) → (𝐴 # 𝐶 ∨ 𝐵 # 𝐷))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 709 ∈ wcel 2164 class class class wbr 4030 (class class class)co 5919 ℂcc 7872 + caddc 7877 # cap 8602 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-cnex 7965 ax-resscn 7966 ax-1cn 7967 ax-1re 7968 ax-icn 7969 ax-addcl 7970 ax-addrcl 7971 ax-mulcl 7972 ax-mulrcl 7973 ax-addcom 7974 ax-mulcom 7975 ax-addass 7976 ax-mulass 7977 ax-distr 7978 ax-i2m1 7979 ax-0lt1 7980 ax-1rid 7981 ax-0id 7982 ax-rnegex 7983 ax-precex 7984 ax-cnre 7985 ax-pre-ltirr 7986 ax-pre-ltwlin 7987 ax-pre-lttrn 7988 ax-pre-apti 7989 ax-pre-ltadd 7990 ax-pre-mulgt0 7991 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2987 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-br 4031 df-opab 4092 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-iota 5216 df-fun 5257 df-fv 5263 df-riota 5874 df-ov 5922 df-oprab 5923 df-mpo 5924 df-pnf 8058 df-mnf 8059 df-ltxr 8061 df-sub 8194 df-neg 8195 df-reap 8596 df-ap 8603 |
This theorem is referenced by: mulext1 8633 abs00ap 11209 absext 11210 |
Copyright terms: Public domain | W3C validator |