![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > addext | GIF version |
Description: Strong extensionality for addition. Given excluded middle, apartness would be equivalent to negated equality and this would follow readily (for all operations) from oveq12 5886. For us, it is proved a different way. (Contributed by Jim Kingdon, 15-Feb-2020.) |
Ref | Expression |
---|---|
addext | ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 + 𝐵) # (𝐶 + 𝐷) → (𝐴 # 𝐶 ∨ 𝐵 # 𝐷))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpll 527 | . . . 4 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → 𝐴 ∈ ℂ) | |
2 | simplr 528 | . . . 4 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → 𝐵 ∈ ℂ) | |
3 | 1, 2 | addcld 7979 | . . 3 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (𝐴 + 𝐵) ∈ ℂ) |
4 | simprl 529 | . . . 4 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → 𝐶 ∈ ℂ) | |
5 | simprr 531 | . . . 4 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → 𝐷 ∈ ℂ) | |
6 | 4, 5 | addcld 7979 | . . 3 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (𝐶 + 𝐷) ∈ ℂ) |
7 | 4, 2 | addcld 7979 | . . 3 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (𝐶 + 𝐵) ∈ ℂ) |
8 | apcotr 8566 | . . 3 ⊢ (((𝐴 + 𝐵) ∈ ℂ ∧ (𝐶 + 𝐷) ∈ ℂ ∧ (𝐶 + 𝐵) ∈ ℂ) → ((𝐴 + 𝐵) # (𝐶 + 𝐷) → ((𝐴 + 𝐵) # (𝐶 + 𝐵) ∨ (𝐶 + 𝐷) # (𝐶 + 𝐵)))) | |
9 | 3, 6, 7, 8 | syl3anc 1238 | . 2 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 + 𝐵) # (𝐶 + 𝐷) → ((𝐴 + 𝐵) # (𝐶 + 𝐵) ∨ (𝐶 + 𝐷) # (𝐶 + 𝐵)))) |
10 | apadd1 8567 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 # 𝐶 ↔ (𝐴 + 𝐵) # (𝐶 + 𝐵))) | |
11 | 1, 4, 2, 10 | syl3anc 1238 | . . 3 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (𝐴 # 𝐶 ↔ (𝐴 + 𝐵) # (𝐶 + 𝐵))) |
12 | apadd2 8568 | . . . . 5 ⊢ ((𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐵 # 𝐷 ↔ (𝐶 + 𝐵) # (𝐶 + 𝐷))) | |
13 | 2, 5, 4, 12 | syl3anc 1238 | . . . 4 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (𝐵 # 𝐷 ↔ (𝐶 + 𝐵) # (𝐶 + 𝐷))) |
14 | apsym 8565 | . . . . 5 ⊢ (((𝐶 + 𝐵) ∈ ℂ ∧ (𝐶 + 𝐷) ∈ ℂ) → ((𝐶 + 𝐵) # (𝐶 + 𝐷) ↔ (𝐶 + 𝐷) # (𝐶 + 𝐵))) | |
15 | 7, 6, 14 | syl2anc 411 | . . . 4 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐶 + 𝐵) # (𝐶 + 𝐷) ↔ (𝐶 + 𝐷) # (𝐶 + 𝐵))) |
16 | 13, 15 | bitrd 188 | . . 3 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (𝐵 # 𝐷 ↔ (𝐶 + 𝐷) # (𝐶 + 𝐵))) |
17 | 11, 16 | orbi12d 793 | . 2 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 # 𝐶 ∨ 𝐵 # 𝐷) ↔ ((𝐴 + 𝐵) # (𝐶 + 𝐵) ∨ (𝐶 + 𝐷) # (𝐶 + 𝐵)))) |
18 | 9, 17 | sylibrd 169 | 1 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 + 𝐵) # (𝐶 + 𝐷) → (𝐴 # 𝐶 ∨ 𝐵 # 𝐷))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 708 ∈ wcel 2148 class class class wbr 4005 (class class class)co 5877 ℂcc 7811 + caddc 7816 # cap 8540 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 ax-cnex 7904 ax-resscn 7905 ax-1cn 7906 ax-1re 7907 ax-icn 7908 ax-addcl 7909 ax-addrcl 7910 ax-mulcl 7911 ax-mulrcl 7912 ax-addcom 7913 ax-mulcom 7914 ax-addass 7915 ax-mulass 7916 ax-distr 7917 ax-i2m1 7918 ax-0lt1 7919 ax-1rid 7920 ax-0id 7921 ax-rnegex 7922 ax-precex 7923 ax-cnre 7924 ax-pre-ltirr 7925 ax-pre-ltwlin 7926 ax-pre-lttrn 7927 ax-pre-apti 7928 ax-pre-ltadd 7929 ax-pre-mulgt0 7930 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rab 2464 df-v 2741 df-sbc 2965 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-br 4006 df-opab 4067 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-iota 5180 df-fun 5220 df-fv 5226 df-riota 5833 df-ov 5880 df-oprab 5881 df-mpo 5882 df-pnf 7996 df-mnf 7997 df-ltxr 7999 df-sub 8132 df-neg 8133 df-reap 8534 df-ap 8541 |
This theorem is referenced by: mulext1 8571 abs00ap 11073 absext 11074 |
Copyright terms: Public domain | W3C validator |