ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addext GIF version

Theorem addext 8508
Description: Strong extensionality for addition. Given excluded middle, apartness would be equivalent to negated equality and this would follow readily (for all operations) from oveq12 5851. For us, it is proved a different way. (Contributed by Jim Kingdon, 15-Feb-2020.)
Assertion
Ref Expression
addext (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 + 𝐵) # (𝐶 + 𝐷) → (𝐴 # 𝐶𝐵 # 𝐷)))

Proof of Theorem addext
StepHypRef Expression
1 simpll 519 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → 𝐴 ∈ ℂ)
2 simplr 520 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → 𝐵 ∈ ℂ)
31, 2addcld 7918 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (𝐴 + 𝐵) ∈ ℂ)
4 simprl 521 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → 𝐶 ∈ ℂ)
5 simprr 522 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → 𝐷 ∈ ℂ)
64, 5addcld 7918 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (𝐶 + 𝐷) ∈ ℂ)
74, 2addcld 7918 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (𝐶 + 𝐵) ∈ ℂ)
8 apcotr 8505 . . 3 (((𝐴 + 𝐵) ∈ ℂ ∧ (𝐶 + 𝐷) ∈ ℂ ∧ (𝐶 + 𝐵) ∈ ℂ) → ((𝐴 + 𝐵) # (𝐶 + 𝐷) → ((𝐴 + 𝐵) # (𝐶 + 𝐵) ∨ (𝐶 + 𝐷) # (𝐶 + 𝐵))))
93, 6, 7, 8syl3anc 1228 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 + 𝐵) # (𝐶 + 𝐷) → ((𝐴 + 𝐵) # (𝐶 + 𝐵) ∨ (𝐶 + 𝐷) # (𝐶 + 𝐵))))
10 apadd1 8506 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 # 𝐶 ↔ (𝐴 + 𝐵) # (𝐶 + 𝐵)))
111, 4, 2, 10syl3anc 1228 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (𝐴 # 𝐶 ↔ (𝐴 + 𝐵) # (𝐶 + 𝐵)))
12 apadd2 8507 . . . . 5 ((𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐵 # 𝐷 ↔ (𝐶 + 𝐵) # (𝐶 + 𝐷)))
132, 5, 4, 12syl3anc 1228 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (𝐵 # 𝐷 ↔ (𝐶 + 𝐵) # (𝐶 + 𝐷)))
14 apsym 8504 . . . . 5 (((𝐶 + 𝐵) ∈ ℂ ∧ (𝐶 + 𝐷) ∈ ℂ) → ((𝐶 + 𝐵) # (𝐶 + 𝐷) ↔ (𝐶 + 𝐷) # (𝐶 + 𝐵)))
157, 6, 14syl2anc 409 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐶 + 𝐵) # (𝐶 + 𝐷) ↔ (𝐶 + 𝐷) # (𝐶 + 𝐵)))
1613, 15bitrd 187 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (𝐵 # 𝐷 ↔ (𝐶 + 𝐷) # (𝐶 + 𝐵)))
1711, 16orbi12d 783 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 # 𝐶𝐵 # 𝐷) ↔ ((𝐴 + 𝐵) # (𝐶 + 𝐵) ∨ (𝐶 + 𝐷) # (𝐶 + 𝐵))))
189, 17sylibrd 168 1 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 + 𝐵) # (𝐶 + 𝐷) → (𝐴 # 𝐶𝐵 # 𝐷)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wo 698  wcel 2136   class class class wbr 3982  (class class class)co 5842  cc 7751   + caddc 7756   # cap 8479
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-iota 5153  df-fun 5190  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-pnf 7935  df-mnf 7936  df-ltxr 7938  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480
This theorem is referenced by:  mulext1  8510  abs00ap  11004  absext  11005
  Copyright terms: Public domain W3C validator