ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addlocprlemgt Unicode version

Theorem addlocprlemgt 7594
Description: Lemma for addlocpr 7596. The  ( D  +Q  E
)  <Q  Q case. (Contributed by Jim Kingdon, 6-Dec-2019.)
Hypotheses
Ref Expression
addlocprlem.a  |-  ( ph  ->  A  e.  P. )
addlocprlem.b  |-  ( ph  ->  B  e.  P. )
addlocprlem.qr  |-  ( ph  ->  Q  <Q  R )
addlocprlem.p  |-  ( ph  ->  P  e.  Q. )
addlocprlem.qppr  |-  ( ph  ->  ( Q  +Q  ( P  +Q  P ) )  =  R )
addlocprlem.dlo  |-  ( ph  ->  D  e.  ( 1st `  A ) )
addlocprlem.uup  |-  ( ph  ->  U  e.  ( 2nd `  A ) )
addlocprlem.du  |-  ( ph  ->  U  <Q  ( D  +Q  P ) )
addlocprlem.elo  |-  ( ph  ->  E  e.  ( 1st `  B ) )
addlocprlem.tup  |-  ( ph  ->  T  e.  ( 2nd `  B ) )
addlocprlem.et  |-  ( ph  ->  T  <Q  ( E  +Q  P ) )
Assertion
Ref Expression
addlocprlemgt  |-  ( ph  ->  ( ( D  +Q  E )  <Q  Q  ->  R  e.  ( 2nd `  ( A  +P.  B
) ) ) )

Proof of Theorem addlocprlemgt
StepHypRef Expression
1 addlocprlem.a . . . . . . 7  |-  ( ph  ->  A  e.  P. )
2 addlocprlem.b . . . . . . 7  |-  ( ph  ->  B  e.  P. )
3 addlocprlem.qr . . . . . . 7  |-  ( ph  ->  Q  <Q  R )
4 addlocprlem.p . . . . . . 7  |-  ( ph  ->  P  e.  Q. )
5 addlocprlem.qppr . . . . . . 7  |-  ( ph  ->  ( Q  +Q  ( P  +Q  P ) )  =  R )
6 addlocprlem.dlo . . . . . . 7  |-  ( ph  ->  D  e.  ( 1st `  A ) )
7 addlocprlem.uup . . . . . . 7  |-  ( ph  ->  U  e.  ( 2nd `  A ) )
8 addlocprlem.du . . . . . . 7  |-  ( ph  ->  U  <Q  ( D  +Q  P ) )
9 addlocprlem.elo . . . . . . 7  |-  ( ph  ->  E  e.  ( 1st `  B ) )
10 addlocprlem.tup . . . . . . 7  |-  ( ph  ->  T  e.  ( 2nd `  B ) )
11 addlocprlem.et . . . . . . 7  |-  ( ph  ->  T  <Q  ( E  +Q  P ) )
121, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11addlocprlemeqgt 7592 . . . . . 6  |-  ( ph  ->  ( U  +Q  T
)  <Q  ( ( D  +Q  E )  +Q  ( P  +Q  P
) ) )
1312adantr 276 . . . . 5  |-  ( (
ph  /\  ( D  +Q  E )  <Q  Q )  ->  ( U  +Q  T )  <Q  (
( D  +Q  E
)  +Q  ( P  +Q  P ) ) )
14 prop 7535 . . . . . . . . . . . 12  |-  ( A  e.  P.  ->  <. ( 1st `  A ) ,  ( 2nd `  A
) >.  e.  P. )
151, 14syl 14 . . . . . . . . . . 11  |-  ( ph  -> 
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P. )
16 elprnql 7541 . . . . . . . . . . 11  |-  ( (
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  /\  D  e.  ( 1st `  A ) )  ->  D  e.  Q. )
1715, 6, 16syl2anc 411 . . . . . . . . . 10  |-  ( ph  ->  D  e.  Q. )
18 prop 7535 . . . . . . . . . . . 12  |-  ( B  e.  P.  ->  <. ( 1st `  B ) ,  ( 2nd `  B
) >.  e.  P. )
192, 18syl 14 . . . . . . . . . . 11  |-  ( ph  -> 
<. ( 1st `  B
) ,  ( 2nd `  B ) >.  e.  P. )
20 elprnql 7541 . . . . . . . . . . 11  |-  ( (
<. ( 1st `  B
) ,  ( 2nd `  B ) >.  e.  P.  /\  E  e.  ( 1st `  B ) )  ->  E  e.  Q. )
2119, 9, 20syl2anc 411 . . . . . . . . . 10  |-  ( ph  ->  E  e.  Q. )
22 addclnq 7435 . . . . . . . . . 10  |-  ( ( D  e.  Q.  /\  E  e.  Q. )  ->  ( D  +Q  E
)  e.  Q. )
2317, 21, 22syl2anc 411 . . . . . . . . 9  |-  ( ph  ->  ( D  +Q  E
)  e.  Q. )
24 ltrelnq 7425 . . . . . . . . . . . 12  |-  <Q  C_  ( Q.  X.  Q. )
2524brel 4711 . . . . . . . . . . 11  |-  ( Q 
<Q  R  ->  ( Q  e.  Q.  /\  R  e.  Q. ) )
263, 25syl 14 . . . . . . . . . 10  |-  ( ph  ->  ( Q  e.  Q.  /\  R  e.  Q. )
)
2726simpld 112 . . . . . . . . 9  |-  ( ph  ->  Q  e.  Q. )
28 addclnq 7435 . . . . . . . . . 10  |-  ( ( P  e.  Q.  /\  P  e.  Q. )  ->  ( P  +Q  P
)  e.  Q. )
294, 4, 28syl2anc 411 . . . . . . . . 9  |-  ( ph  ->  ( P  +Q  P
)  e.  Q. )
30 ltanqg 7460 . . . . . . . . 9  |-  ( ( ( D  +Q  E
)  e.  Q.  /\  Q  e.  Q.  /\  ( P  +Q  P )  e. 
Q. )  ->  (
( D  +Q  E
)  <Q  Q  <->  ( ( P  +Q  P )  +Q  ( D  +Q  E
) )  <Q  (
( P  +Q  P
)  +Q  Q ) ) )
3123, 27, 29, 30syl3anc 1249 . . . . . . . 8  |-  ( ph  ->  ( ( D  +Q  E )  <Q  Q  <->  ( ( P  +Q  P )  +Q  ( D  +Q  E
) )  <Q  (
( P  +Q  P
)  +Q  Q ) ) )
32 addcomnqg 7441 . . . . . . . . . 10  |-  ( ( ( P  +Q  P
)  e.  Q.  /\  ( D  +Q  E
)  e.  Q. )  ->  ( ( P  +Q  P )  +Q  ( D  +Q  E ) )  =  ( ( D  +Q  E )  +Q  ( P  +Q  P
) ) )
3329, 23, 32syl2anc 411 . . . . . . . . 9  |-  ( ph  ->  ( ( P  +Q  P )  +Q  ( D  +Q  E ) )  =  ( ( D  +Q  E )  +Q  ( P  +Q  P
) ) )
34 addcomnqg 7441 . . . . . . . . . 10  |-  ( ( ( P  +Q  P
)  e.  Q.  /\  Q  e.  Q. )  ->  ( ( P  +Q  P )  +Q  Q
)  =  ( Q  +Q  ( P  +Q  P ) ) )
3529, 27, 34syl2anc 411 . . . . . . . . 9  |-  ( ph  ->  ( ( P  +Q  P )  +Q  Q
)  =  ( Q  +Q  ( P  +Q  P ) ) )
3633, 35breq12d 4042 . . . . . . . 8  |-  ( ph  ->  ( ( ( P  +Q  P )  +Q  ( D  +Q  E
) )  <Q  (
( P  +Q  P
)  +Q  Q )  <-> 
( ( D  +Q  E )  +Q  ( P  +Q  P ) ) 
<Q  ( Q  +Q  ( P  +Q  P ) ) ) )
3731, 36bitrd 188 . . . . . . 7  |-  ( ph  ->  ( ( D  +Q  E )  <Q  Q  <->  ( ( D  +Q  E )  +Q  ( P  +Q  P
) )  <Q  ( Q  +Q  ( P  +Q  P ) ) ) )
3837biimpa 296 . . . . . 6  |-  ( (
ph  /\  ( D  +Q  E )  <Q  Q )  ->  ( ( D  +Q  E )  +Q  ( P  +Q  P
) )  <Q  ( Q  +Q  ( P  +Q  P ) ) )
395breq2d 4041 . . . . . . 7  |-  ( ph  ->  ( ( ( D  +Q  E )  +Q  ( P  +Q  P
) )  <Q  ( Q  +Q  ( P  +Q  P ) )  <->  ( ( D  +Q  E )  +Q  ( P  +Q  P
) )  <Q  R ) )
4039adantr 276 . . . . . 6  |-  ( (
ph  /\  ( D  +Q  E )  <Q  Q )  ->  ( ( ( D  +Q  E )  +Q  ( P  +Q  P ) )  <Q 
( Q  +Q  ( P  +Q  P ) )  <-> 
( ( D  +Q  E )  +Q  ( P  +Q  P ) ) 
<Q  R ) )
4138, 40mpbid 147 . . . . 5  |-  ( (
ph  /\  ( D  +Q  E )  <Q  Q )  ->  ( ( D  +Q  E )  +Q  ( P  +Q  P
) )  <Q  R )
4213, 41jca 306 . . . 4  |-  ( (
ph  /\  ( D  +Q  E )  <Q  Q )  ->  ( ( U  +Q  T )  <Q 
( ( D  +Q  E )  +Q  ( P  +Q  P ) )  /\  ( ( D  +Q  E )  +Q  ( P  +Q  P
) )  <Q  R ) )
43 ltsonq 7458 . . . . 5  |-  <Q  Or  Q.
4443, 24sotri 5061 . . . 4  |-  ( ( ( U  +Q  T
)  <Q  ( ( D  +Q  E )  +Q  ( P  +Q  P
) )  /\  (
( D  +Q  E
)  +Q  ( P  +Q  P ) ) 
<Q  R )  ->  ( U  +Q  T )  <Q  R )
4542, 44syl 14 . . 3  |-  ( (
ph  /\  ( D  +Q  E )  <Q  Q )  ->  ( U  +Q  T )  <Q  R )
461, 7jca 306 . . . . 5  |-  ( ph  ->  ( A  e.  P.  /\  U  e.  ( 2nd `  A ) ) )
472, 10jca 306 . . . . 5  |-  ( ph  ->  ( B  e.  P.  /\  T  e.  ( 2nd `  B ) ) )
4826simprd 114 . . . . 5  |-  ( ph  ->  R  e.  Q. )
49 addnqpru 7590 . . . . 5  |-  ( ( ( ( A  e. 
P.  /\  U  e.  ( 2nd `  A ) )  /\  ( B  e.  P.  /\  T  e.  ( 2nd `  B
) ) )  /\  R  e.  Q. )  ->  ( ( U  +Q  T )  <Q  R  ->  R  e.  ( 2nd `  ( A  +P.  B
) ) ) )
5046, 47, 48, 49syl21anc 1248 . . . 4  |-  ( ph  ->  ( ( U  +Q  T )  <Q  R  ->  R  e.  ( 2nd `  ( A  +P.  B
) ) ) )
5150adantr 276 . . 3  |-  ( (
ph  /\  ( D  +Q  E )  <Q  Q )  ->  ( ( U  +Q  T )  <Q  R  ->  R  e.  ( 2nd `  ( A  +P.  B ) ) ) )
5245, 51mpd 13 . 2  |-  ( (
ph  /\  ( D  +Q  E )  <Q  Q )  ->  R  e.  ( 2nd `  ( A  +P.  B ) ) )
5352ex 115 1  |-  ( ph  ->  ( ( D  +Q  E )  <Q  Q  ->  R  e.  ( 2nd `  ( A  +P.  B
) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2164   <.cop 3621   class class class wbr 4029   ` cfv 5254  (class class class)co 5918   1stc1st 6191   2ndc2nd 6192   Q.cnq 7340    +Q cplq 7342    <Q cltq 7345   P.cnp 7351    +P. cpp 7353
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-eprel 4320  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-irdg 6423  df-1o 6469  df-oadd 6473  df-omul 6474  df-er 6587  df-ec 6589  df-qs 6593  df-ni 7364  df-pli 7365  df-mi 7366  df-lti 7367  df-plpq 7404  df-mpq 7405  df-enq 7407  df-nqqs 7408  df-plqqs 7409  df-mqqs 7410  df-1nqqs 7411  df-rq 7412  df-ltnqqs 7413  df-inp 7526  df-iplp 7528
This theorem is referenced by:  addlocprlem  7595
  Copyright terms: Public domain W3C validator