ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addlocprlemgt Unicode version

Theorem addlocprlemgt 7682
Description: Lemma for addlocpr 7684. The  ( D  +Q  E
)  <Q  Q case. (Contributed by Jim Kingdon, 6-Dec-2019.)
Hypotheses
Ref Expression
addlocprlem.a  |-  ( ph  ->  A  e.  P. )
addlocprlem.b  |-  ( ph  ->  B  e.  P. )
addlocprlem.qr  |-  ( ph  ->  Q  <Q  R )
addlocprlem.p  |-  ( ph  ->  P  e.  Q. )
addlocprlem.qppr  |-  ( ph  ->  ( Q  +Q  ( P  +Q  P ) )  =  R )
addlocprlem.dlo  |-  ( ph  ->  D  e.  ( 1st `  A ) )
addlocprlem.uup  |-  ( ph  ->  U  e.  ( 2nd `  A ) )
addlocprlem.du  |-  ( ph  ->  U  <Q  ( D  +Q  P ) )
addlocprlem.elo  |-  ( ph  ->  E  e.  ( 1st `  B ) )
addlocprlem.tup  |-  ( ph  ->  T  e.  ( 2nd `  B ) )
addlocprlem.et  |-  ( ph  ->  T  <Q  ( E  +Q  P ) )
Assertion
Ref Expression
addlocprlemgt  |-  ( ph  ->  ( ( D  +Q  E )  <Q  Q  ->  R  e.  ( 2nd `  ( A  +P.  B
) ) ) )

Proof of Theorem addlocprlemgt
StepHypRef Expression
1 addlocprlem.a . . . . . . 7  |-  ( ph  ->  A  e.  P. )
2 addlocprlem.b . . . . . . 7  |-  ( ph  ->  B  e.  P. )
3 addlocprlem.qr . . . . . . 7  |-  ( ph  ->  Q  <Q  R )
4 addlocprlem.p . . . . . . 7  |-  ( ph  ->  P  e.  Q. )
5 addlocprlem.qppr . . . . . . 7  |-  ( ph  ->  ( Q  +Q  ( P  +Q  P ) )  =  R )
6 addlocprlem.dlo . . . . . . 7  |-  ( ph  ->  D  e.  ( 1st `  A ) )
7 addlocprlem.uup . . . . . . 7  |-  ( ph  ->  U  e.  ( 2nd `  A ) )
8 addlocprlem.du . . . . . . 7  |-  ( ph  ->  U  <Q  ( D  +Q  P ) )
9 addlocprlem.elo . . . . . . 7  |-  ( ph  ->  E  e.  ( 1st `  B ) )
10 addlocprlem.tup . . . . . . 7  |-  ( ph  ->  T  e.  ( 2nd `  B ) )
11 addlocprlem.et . . . . . . 7  |-  ( ph  ->  T  <Q  ( E  +Q  P ) )
121, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11addlocprlemeqgt 7680 . . . . . 6  |-  ( ph  ->  ( U  +Q  T
)  <Q  ( ( D  +Q  E )  +Q  ( P  +Q  P
) ) )
1312adantr 276 . . . . 5  |-  ( (
ph  /\  ( D  +Q  E )  <Q  Q )  ->  ( U  +Q  T )  <Q  (
( D  +Q  E
)  +Q  ( P  +Q  P ) ) )
14 prop 7623 . . . . . . . . . . . 12  |-  ( A  e.  P.  ->  <. ( 1st `  A ) ,  ( 2nd `  A
) >.  e.  P. )
151, 14syl 14 . . . . . . . . . . 11  |-  ( ph  -> 
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P. )
16 elprnql 7629 . . . . . . . . . . 11  |-  ( (
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  /\  D  e.  ( 1st `  A ) )  ->  D  e.  Q. )
1715, 6, 16syl2anc 411 . . . . . . . . . 10  |-  ( ph  ->  D  e.  Q. )
18 prop 7623 . . . . . . . . . . . 12  |-  ( B  e.  P.  ->  <. ( 1st `  B ) ,  ( 2nd `  B
) >.  e.  P. )
192, 18syl 14 . . . . . . . . . . 11  |-  ( ph  -> 
<. ( 1st `  B
) ,  ( 2nd `  B ) >.  e.  P. )
20 elprnql 7629 . . . . . . . . . . 11  |-  ( (
<. ( 1st `  B
) ,  ( 2nd `  B ) >.  e.  P.  /\  E  e.  ( 1st `  B ) )  ->  E  e.  Q. )
2119, 9, 20syl2anc 411 . . . . . . . . . 10  |-  ( ph  ->  E  e.  Q. )
22 addclnq 7523 . . . . . . . . . 10  |-  ( ( D  e.  Q.  /\  E  e.  Q. )  ->  ( D  +Q  E
)  e.  Q. )
2317, 21, 22syl2anc 411 . . . . . . . . 9  |-  ( ph  ->  ( D  +Q  E
)  e.  Q. )
24 ltrelnq 7513 . . . . . . . . . . . 12  |-  <Q  C_  ( Q.  X.  Q. )
2524brel 4745 . . . . . . . . . . 11  |-  ( Q 
<Q  R  ->  ( Q  e.  Q.  /\  R  e.  Q. ) )
263, 25syl 14 . . . . . . . . . 10  |-  ( ph  ->  ( Q  e.  Q.  /\  R  e.  Q. )
)
2726simpld 112 . . . . . . . . 9  |-  ( ph  ->  Q  e.  Q. )
28 addclnq 7523 . . . . . . . . . 10  |-  ( ( P  e.  Q.  /\  P  e.  Q. )  ->  ( P  +Q  P
)  e.  Q. )
294, 4, 28syl2anc 411 . . . . . . . . 9  |-  ( ph  ->  ( P  +Q  P
)  e.  Q. )
30 ltanqg 7548 . . . . . . . . 9  |-  ( ( ( D  +Q  E
)  e.  Q.  /\  Q  e.  Q.  /\  ( P  +Q  P )  e. 
Q. )  ->  (
( D  +Q  E
)  <Q  Q  <->  ( ( P  +Q  P )  +Q  ( D  +Q  E
) )  <Q  (
( P  +Q  P
)  +Q  Q ) ) )
3123, 27, 29, 30syl3anc 1250 . . . . . . . 8  |-  ( ph  ->  ( ( D  +Q  E )  <Q  Q  <->  ( ( P  +Q  P )  +Q  ( D  +Q  E
) )  <Q  (
( P  +Q  P
)  +Q  Q ) ) )
32 addcomnqg 7529 . . . . . . . . . 10  |-  ( ( ( P  +Q  P
)  e.  Q.  /\  ( D  +Q  E
)  e.  Q. )  ->  ( ( P  +Q  P )  +Q  ( D  +Q  E ) )  =  ( ( D  +Q  E )  +Q  ( P  +Q  P
) ) )
3329, 23, 32syl2anc 411 . . . . . . . . 9  |-  ( ph  ->  ( ( P  +Q  P )  +Q  ( D  +Q  E ) )  =  ( ( D  +Q  E )  +Q  ( P  +Q  P
) ) )
34 addcomnqg 7529 . . . . . . . . . 10  |-  ( ( ( P  +Q  P
)  e.  Q.  /\  Q  e.  Q. )  ->  ( ( P  +Q  P )  +Q  Q
)  =  ( Q  +Q  ( P  +Q  P ) ) )
3529, 27, 34syl2anc 411 . . . . . . . . 9  |-  ( ph  ->  ( ( P  +Q  P )  +Q  Q
)  =  ( Q  +Q  ( P  +Q  P ) ) )
3633, 35breq12d 4072 . . . . . . . 8  |-  ( ph  ->  ( ( ( P  +Q  P )  +Q  ( D  +Q  E
) )  <Q  (
( P  +Q  P
)  +Q  Q )  <-> 
( ( D  +Q  E )  +Q  ( P  +Q  P ) ) 
<Q  ( Q  +Q  ( P  +Q  P ) ) ) )
3731, 36bitrd 188 . . . . . . 7  |-  ( ph  ->  ( ( D  +Q  E )  <Q  Q  <->  ( ( D  +Q  E )  +Q  ( P  +Q  P
) )  <Q  ( Q  +Q  ( P  +Q  P ) ) ) )
3837biimpa 296 . . . . . 6  |-  ( (
ph  /\  ( D  +Q  E )  <Q  Q )  ->  ( ( D  +Q  E )  +Q  ( P  +Q  P
) )  <Q  ( Q  +Q  ( P  +Q  P ) ) )
395breq2d 4071 . . . . . . 7  |-  ( ph  ->  ( ( ( D  +Q  E )  +Q  ( P  +Q  P
) )  <Q  ( Q  +Q  ( P  +Q  P ) )  <->  ( ( D  +Q  E )  +Q  ( P  +Q  P
) )  <Q  R ) )
4039adantr 276 . . . . . 6  |-  ( (
ph  /\  ( D  +Q  E )  <Q  Q )  ->  ( ( ( D  +Q  E )  +Q  ( P  +Q  P ) )  <Q 
( Q  +Q  ( P  +Q  P ) )  <-> 
( ( D  +Q  E )  +Q  ( P  +Q  P ) ) 
<Q  R ) )
4138, 40mpbid 147 . . . . 5  |-  ( (
ph  /\  ( D  +Q  E )  <Q  Q )  ->  ( ( D  +Q  E )  +Q  ( P  +Q  P
) )  <Q  R )
4213, 41jca 306 . . . 4  |-  ( (
ph  /\  ( D  +Q  E )  <Q  Q )  ->  ( ( U  +Q  T )  <Q 
( ( D  +Q  E )  +Q  ( P  +Q  P ) )  /\  ( ( D  +Q  E )  +Q  ( P  +Q  P
) )  <Q  R ) )
43 ltsonq 7546 . . . . 5  |-  <Q  Or  Q.
4443, 24sotri 5097 . . . 4  |-  ( ( ( U  +Q  T
)  <Q  ( ( D  +Q  E )  +Q  ( P  +Q  P
) )  /\  (
( D  +Q  E
)  +Q  ( P  +Q  P ) ) 
<Q  R )  ->  ( U  +Q  T )  <Q  R )
4542, 44syl 14 . . 3  |-  ( (
ph  /\  ( D  +Q  E )  <Q  Q )  ->  ( U  +Q  T )  <Q  R )
461, 7jca 306 . . . . 5  |-  ( ph  ->  ( A  e.  P.  /\  U  e.  ( 2nd `  A ) ) )
472, 10jca 306 . . . . 5  |-  ( ph  ->  ( B  e.  P.  /\  T  e.  ( 2nd `  B ) ) )
4826simprd 114 . . . . 5  |-  ( ph  ->  R  e.  Q. )
49 addnqpru 7678 . . . . 5  |-  ( ( ( ( A  e. 
P.  /\  U  e.  ( 2nd `  A ) )  /\  ( B  e.  P.  /\  T  e.  ( 2nd `  B
) ) )  /\  R  e.  Q. )  ->  ( ( U  +Q  T )  <Q  R  ->  R  e.  ( 2nd `  ( A  +P.  B
) ) ) )
5046, 47, 48, 49syl21anc 1249 . . . 4  |-  ( ph  ->  ( ( U  +Q  T )  <Q  R  ->  R  e.  ( 2nd `  ( A  +P.  B
) ) ) )
5150adantr 276 . . 3  |-  ( (
ph  /\  ( D  +Q  E )  <Q  Q )  ->  ( ( U  +Q  T )  <Q  R  ->  R  e.  ( 2nd `  ( A  +P.  B ) ) ) )
5245, 51mpd 13 . 2  |-  ( (
ph  /\  ( D  +Q  E )  <Q  Q )  ->  R  e.  ( 2nd `  ( A  +P.  B ) ) )
5352ex 115 1  |-  ( ph  ->  ( ( D  +Q  E )  <Q  Q  ->  R  e.  ( 2nd `  ( A  +P.  B
) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2178   <.cop 3646   class class class wbr 4059   ` cfv 5290  (class class class)co 5967   1stc1st 6247   2ndc2nd 6248   Q.cnq 7428    +Q cplq 7430    <Q cltq 7433   P.cnp 7439    +P. cpp 7441
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-eprel 4354  df-id 4358  df-po 4361  df-iso 4362  df-iord 4431  df-on 4433  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-recs 6414  df-irdg 6479  df-1o 6525  df-oadd 6529  df-omul 6530  df-er 6643  df-ec 6645  df-qs 6649  df-ni 7452  df-pli 7453  df-mi 7454  df-lti 7455  df-plpq 7492  df-mpq 7493  df-enq 7495  df-nqqs 7496  df-plqqs 7497  df-mqqs 7498  df-1nqqs 7499  df-rq 7500  df-ltnqqs 7501  df-inp 7614  df-iplp 7616
This theorem is referenced by:  addlocprlem  7683
  Copyright terms: Public domain W3C validator