| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > addlocprlemgt | Unicode version | ||
| Description: Lemma for addlocpr 7684. The |
| Ref | Expression |
|---|---|
| addlocprlem.a |
|
| addlocprlem.b |
|
| addlocprlem.qr |
|
| addlocprlem.p |
|
| addlocprlem.qppr |
|
| addlocprlem.dlo |
|
| addlocprlem.uup |
|
| addlocprlem.du |
|
| addlocprlem.elo |
|
| addlocprlem.tup |
|
| addlocprlem.et |
|
| Ref | Expression |
|---|---|
| addlocprlemgt |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | addlocprlem.a |
. . . . . . 7
| |
| 2 | addlocprlem.b |
. . . . . . 7
| |
| 3 | addlocprlem.qr |
. . . . . . 7
| |
| 4 | addlocprlem.p |
. . . . . . 7
| |
| 5 | addlocprlem.qppr |
. . . . . . 7
| |
| 6 | addlocprlem.dlo |
. . . . . . 7
| |
| 7 | addlocprlem.uup |
. . . . . . 7
| |
| 8 | addlocprlem.du |
. . . . . . 7
| |
| 9 | addlocprlem.elo |
. . . . . . 7
| |
| 10 | addlocprlem.tup |
. . . . . . 7
| |
| 11 | addlocprlem.et |
. . . . . . 7
| |
| 12 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 | addlocprlemeqgt 7680 |
. . . . . 6
|
| 13 | 12 | adantr 276 |
. . . . 5
|
| 14 | prop 7623 |
. . . . . . . . . . . 12
| |
| 15 | 1, 14 | syl 14 |
. . . . . . . . . . 11
|
| 16 | elprnql 7629 |
. . . . . . . . . . 11
| |
| 17 | 15, 6, 16 | syl2anc 411 |
. . . . . . . . . 10
|
| 18 | prop 7623 |
. . . . . . . . . . . 12
| |
| 19 | 2, 18 | syl 14 |
. . . . . . . . . . 11
|
| 20 | elprnql 7629 |
. . . . . . . . . . 11
| |
| 21 | 19, 9, 20 | syl2anc 411 |
. . . . . . . . . 10
|
| 22 | addclnq 7523 |
. . . . . . . . . 10
| |
| 23 | 17, 21, 22 | syl2anc 411 |
. . . . . . . . 9
|
| 24 | ltrelnq 7513 |
. . . . . . . . . . . 12
| |
| 25 | 24 | brel 4745 |
. . . . . . . . . . 11
|
| 26 | 3, 25 | syl 14 |
. . . . . . . . . 10
|
| 27 | 26 | simpld 112 |
. . . . . . . . 9
|
| 28 | addclnq 7523 |
. . . . . . . . . 10
| |
| 29 | 4, 4, 28 | syl2anc 411 |
. . . . . . . . 9
|
| 30 | ltanqg 7548 |
. . . . . . . . 9
| |
| 31 | 23, 27, 29, 30 | syl3anc 1250 |
. . . . . . . 8
|
| 32 | addcomnqg 7529 |
. . . . . . . . . 10
| |
| 33 | 29, 23, 32 | syl2anc 411 |
. . . . . . . . 9
|
| 34 | addcomnqg 7529 |
. . . . . . . . . 10
| |
| 35 | 29, 27, 34 | syl2anc 411 |
. . . . . . . . 9
|
| 36 | 33, 35 | breq12d 4072 |
. . . . . . . 8
|
| 37 | 31, 36 | bitrd 188 |
. . . . . . 7
|
| 38 | 37 | biimpa 296 |
. . . . . 6
|
| 39 | 5 | breq2d 4071 |
. . . . . . 7
|
| 40 | 39 | adantr 276 |
. . . . . 6
|
| 41 | 38, 40 | mpbid 147 |
. . . . 5
|
| 42 | 13, 41 | jca 306 |
. . . 4
|
| 43 | ltsonq 7546 |
. . . . 5
| |
| 44 | 43, 24 | sotri 5097 |
. . . 4
|
| 45 | 42, 44 | syl 14 |
. . 3
|
| 46 | 1, 7 | jca 306 |
. . . . 5
|
| 47 | 2, 10 | jca 306 |
. . . . 5
|
| 48 | 26 | simprd 114 |
. . . . 5
|
| 49 | addnqpru 7678 |
. . . . 5
| |
| 50 | 46, 47, 48, 49 | syl21anc 1249 |
. . . 4
|
| 51 | 50 | adantr 276 |
. . 3
|
| 52 | 45, 51 | mpd 13 |
. 2
|
| 53 | 52 | ex 115 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-iinf 4654 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-tr 4159 df-eprel 4354 df-id 4358 df-po 4361 df-iso 4362 df-iord 4431 df-on 4433 df-suc 4436 df-iom 4657 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-ov 5970 df-oprab 5971 df-mpo 5972 df-1st 6249 df-2nd 6250 df-recs 6414 df-irdg 6479 df-1o 6525 df-oadd 6529 df-omul 6530 df-er 6643 df-ec 6645 df-qs 6649 df-ni 7452 df-pli 7453 df-mi 7454 df-lti 7455 df-plpq 7492 df-mpq 7493 df-enq 7495 df-nqqs 7496 df-plqqs 7497 df-mqqs 7498 df-1nqqs 7499 df-rq 7500 df-ltnqqs 7501 df-inp 7614 df-iplp 7616 |
| This theorem is referenced by: addlocprlem 7683 |
| Copyright terms: Public domain | W3C validator |