ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltmprr Unicode version

Theorem ltmprr 7474
Description: Ordering property of multiplication. (Contributed by Jim Kingdon, 18-Feb-2020.)
Assertion
Ref Expression
ltmprr  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  (
( C  .P.  A
)  <P  ( C  .P.  B )  ->  A  <P  B ) )

Proof of Theorem ltmprr
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 recexpr 7470 . . . . 5  |-  ( C  e.  P.  ->  E. y  e.  P.  ( C  .P.  y )  =  1P )
213ad2ant3 1005 . . . 4  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  E. y  e.  P.  ( C  .P.  y )  =  1P )
32adantr 274 . . 3  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( C  .P.  A
)  <P  ( C  .P.  B ) )  ->  E. y  e.  P.  ( C  .P.  y )  =  1P )
4 ltexpri 7445 . . . . 5  |-  ( ( C  .P.  A ) 
<P  ( C  .P.  B
)  ->  E. x  e.  P.  ( ( C  .P.  A )  +P.  x )  =  ( C  .P.  B ) )
54ad2antlr 481 . . . 4  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( C  .P.  A )  <P  ( C  .P.  B ) )  /\  ( y  e.  P.  /\  ( C  .P.  y
)  =  1P ) )  ->  E. x  e.  P.  ( ( C  .P.  A )  +P.  x )  =  ( C  .P.  B ) )
6 simplll 523 . . . . . . 7  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e. 
P. )  /\  ( C  .P.  A )  <P 
( C  .P.  B
) )  /\  (
y  e.  P.  /\  ( C  .P.  y )  =  1P ) )  /\  ( x  e. 
P.  /\  ( ( C  .P.  A )  +P.  x )  =  ( C  .P.  B ) ) )  ->  ( A  e.  P.  /\  B  e.  P.  /\  C  e. 
P. ) )
76simp1d 994 . . . . . 6  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e. 
P. )  /\  ( C  .P.  A )  <P 
( C  .P.  B
) )  /\  (
y  e.  P.  /\  ( C  .P.  y )  =  1P ) )  /\  ( x  e. 
P.  /\  ( ( C  .P.  A )  +P.  x )  =  ( C  .P.  B ) ) )  ->  A  e.  P. )
8 simplrl 525 . . . . . . 7  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e. 
P. )  /\  ( C  .P.  A )  <P 
( C  .P.  B
) )  /\  (
y  e.  P.  /\  ( C  .P.  y )  =  1P ) )  /\  ( x  e. 
P.  /\  ( ( C  .P.  A )  +P.  x )  =  ( C  .P.  B ) ) )  ->  y  e.  P. )
9 simprl 521 . . . . . . 7  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e. 
P. )  /\  ( C  .P.  A )  <P 
( C  .P.  B
) )  /\  (
y  e.  P.  /\  ( C  .P.  y )  =  1P ) )  /\  ( x  e. 
P.  /\  ( ( C  .P.  A )  +P.  x )  =  ( C  .P.  B ) ) )  ->  x  e.  P. )
10 mulclpr 7404 . . . . . . 7  |-  ( ( y  e.  P.  /\  x  e.  P. )  ->  ( y  .P.  x
)  e.  P. )
118, 9, 10syl2anc 409 . . . . . 6  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e. 
P. )  /\  ( C  .P.  A )  <P 
( C  .P.  B
) )  /\  (
y  e.  P.  /\  ( C  .P.  y )  =  1P ) )  /\  ( x  e. 
P.  /\  ( ( C  .P.  A )  +P.  x )  =  ( C  .P.  B ) ) )  ->  (
y  .P.  x )  e.  P. )
12 ltaddpr 7429 . . . . . 6  |-  ( ( A  e.  P.  /\  ( y  .P.  x
)  e.  P. )  ->  A  <P  ( A  +P.  ( y  .P.  x
) ) )
137, 11, 12syl2anc 409 . . . . 5  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e. 
P. )  /\  ( C  .P.  A )  <P 
( C  .P.  B
) )  /\  (
y  e.  P.  /\  ( C  .P.  y )  =  1P ) )  /\  ( x  e. 
P.  /\  ( ( C  .P.  A )  +P.  x )  =  ( C  .P.  B ) ) )  ->  A  <P  ( A  +P.  (
y  .P.  x )
) )
14 simprr 522 . . . . . . 7  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e. 
P. )  /\  ( C  .P.  A )  <P 
( C  .P.  B
) )  /\  (
y  e.  P.  /\  ( C  .P.  y )  =  1P ) )  /\  ( x  e. 
P.  /\  ( ( C  .P.  A )  +P.  x )  =  ( C  .P.  B ) ) )  ->  (
( C  .P.  A
)  +P.  x )  =  ( C  .P.  B ) )
1514oveq2d 5798 . . . . . 6  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e. 
P. )  /\  ( C  .P.  A )  <P 
( C  .P.  B
) )  /\  (
y  e.  P.  /\  ( C  .P.  y )  =  1P ) )  /\  ( x  e. 
P.  /\  ( ( C  .P.  A )  +P.  x )  =  ( C  .P.  B ) ) )  ->  (
y  .P.  ( ( C  .P.  A )  +P.  x ) )  =  ( y  .P.  ( C  .P.  B ) ) )
166simp3d 996 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e. 
P. )  /\  ( C  .P.  A )  <P 
( C  .P.  B
) )  /\  (
y  e.  P.  /\  ( C  .P.  y )  =  1P ) )  /\  ( x  e. 
P.  /\  ( ( C  .P.  A )  +P.  x )  =  ( C  .P.  B ) ) )  ->  C  e.  P. )
17 mulclpr 7404 . . . . . . . . 9  |-  ( ( C  e.  P.  /\  A  e.  P. )  ->  ( C  .P.  A
)  e.  P. )
1816, 7, 17syl2anc 409 . . . . . . . 8  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e. 
P. )  /\  ( C  .P.  A )  <P 
( C  .P.  B
) )  /\  (
y  e.  P.  /\  ( C  .P.  y )  =  1P ) )  /\  ( x  e. 
P.  /\  ( ( C  .P.  A )  +P.  x )  =  ( C  .P.  B ) ) )  ->  ( C  .P.  A )  e. 
P. )
19 distrprg 7420 . . . . . . . 8  |-  ( ( y  e.  P.  /\  ( C  .P.  A )  e.  P.  /\  x  e.  P. )  ->  (
y  .P.  ( ( C  .P.  A )  +P.  x ) )  =  ( ( y  .P.  ( C  .P.  A
) )  +P.  (
y  .P.  x )
) )
208, 18, 9, 19syl3anc 1217 . . . . . . 7  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e. 
P. )  /\  ( C  .P.  A )  <P 
( C  .P.  B
) )  /\  (
y  e.  P.  /\  ( C  .P.  y )  =  1P ) )  /\  ( x  e. 
P.  /\  ( ( C  .P.  A )  +P.  x )  =  ( C  .P.  B ) ) )  ->  (
y  .P.  ( ( C  .P.  A )  +P.  x ) )  =  ( ( y  .P.  ( C  .P.  A
) )  +P.  (
y  .P.  x )
) )
21 mulassprg 7413 . . . . . . . . 9  |-  ( ( y  e.  P.  /\  C  e.  P.  /\  A  e.  P. )  ->  (
( y  .P.  C
)  .P.  A )  =  ( y  .P.  ( C  .P.  A
) ) )
228, 16, 7, 21syl3anc 1217 . . . . . . . 8  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e. 
P. )  /\  ( C  .P.  A )  <P 
( C  .P.  B
) )  /\  (
y  e.  P.  /\  ( C  .P.  y )  =  1P ) )  /\  ( x  e. 
P.  /\  ( ( C  .P.  A )  +P.  x )  =  ( C  .P.  B ) ) )  ->  (
( y  .P.  C
)  .P.  A )  =  ( y  .P.  ( C  .P.  A
) ) )
2322oveq1d 5797 . . . . . . 7  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e. 
P. )  /\  ( C  .P.  A )  <P 
( C  .P.  B
) )  /\  (
y  e.  P.  /\  ( C  .P.  y )  =  1P ) )  /\  ( x  e. 
P.  /\  ( ( C  .P.  A )  +P.  x )  =  ( C  .P.  B ) ) )  ->  (
( ( y  .P. 
C )  .P.  A
)  +P.  ( y  .P.  x ) )  =  ( ( y  .P.  ( C  .P.  A
) )  +P.  (
y  .P.  x )
) )
24 mulcomprg 7412 . . . . . . . . . . . 12  |-  ( ( y  e.  P.  /\  C  e.  P. )  ->  ( y  .P.  C
)  =  ( C  .P.  y ) )
258, 16, 24syl2anc 409 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e. 
P. )  /\  ( C  .P.  A )  <P 
( C  .P.  B
) )  /\  (
y  e.  P.  /\  ( C  .P.  y )  =  1P ) )  /\  ( x  e. 
P.  /\  ( ( C  .P.  A )  +P.  x )  =  ( C  .P.  B ) ) )  ->  (
y  .P.  C )  =  ( C  .P.  y ) )
26 simplrr 526 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e. 
P. )  /\  ( C  .P.  A )  <P 
( C  .P.  B
) )  /\  (
y  e.  P.  /\  ( C  .P.  y )  =  1P ) )  /\  ( x  e. 
P.  /\  ( ( C  .P.  A )  +P.  x )  =  ( C  .P.  B ) ) )  ->  ( C  .P.  y )  =  1P )
2725, 26eqtrd 2173 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e. 
P. )  /\  ( C  .P.  A )  <P 
( C  .P.  B
) )  /\  (
y  e.  P.  /\  ( C  .P.  y )  =  1P ) )  /\  ( x  e. 
P.  /\  ( ( C  .P.  A )  +P.  x )  =  ( C  .P.  B ) ) )  ->  (
y  .P.  C )  =  1P )
2827oveq1d 5797 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e. 
P. )  /\  ( C  .P.  A )  <P 
( C  .P.  B
) )  /\  (
y  e.  P.  /\  ( C  .P.  y )  =  1P ) )  /\  ( x  e. 
P.  /\  ( ( C  .P.  A )  +P.  x )  =  ( C  .P.  B ) ) )  ->  (
( y  .P.  C
)  .P.  A )  =  ( 1P  .P.  A ) )
29 1pr 7386 . . . . . . . . . . . 12  |-  1P  e.  P.
30 mulcomprg 7412 . . . . . . . . . . . 12  |-  ( ( A  e.  P.  /\  1P  e.  P. )  -> 
( A  .P.  1P )  =  ( 1P  .P.  A ) )
3129, 30mpan2 422 . . . . . . . . . . 11  |-  ( A  e.  P.  ->  ( A  .P.  1P )  =  ( 1P  .P.  A
) )
32 1idpr 7424 . . . . . . . . . . 11  |-  ( A  e.  P.  ->  ( A  .P.  1P )  =  A )
3331, 32eqtr3d 2175 . . . . . . . . . 10  |-  ( A  e.  P.  ->  ( 1P  .P.  A )  =  A )
347, 33syl 14 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e. 
P. )  /\  ( C  .P.  A )  <P 
( C  .P.  B
) )  /\  (
y  e.  P.  /\  ( C  .P.  y )  =  1P ) )  /\  ( x  e. 
P.  /\  ( ( C  .P.  A )  +P.  x )  =  ( C  .P.  B ) ) )  ->  ( 1P  .P.  A )  =  A )
3528, 34eqtrd 2173 . . . . . . . 8  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e. 
P. )  /\  ( C  .P.  A )  <P 
( C  .P.  B
) )  /\  (
y  e.  P.  /\  ( C  .P.  y )  =  1P ) )  /\  ( x  e. 
P.  /\  ( ( C  .P.  A )  +P.  x )  =  ( C  .P.  B ) ) )  ->  (
( y  .P.  C
)  .P.  A )  =  A )
3635oveq1d 5797 . . . . . . 7  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e. 
P. )  /\  ( C  .P.  A )  <P 
( C  .P.  B
) )  /\  (
y  e.  P.  /\  ( C  .P.  y )  =  1P ) )  /\  ( x  e. 
P.  /\  ( ( C  .P.  A )  +P.  x )  =  ( C  .P.  B ) ) )  ->  (
( ( y  .P. 
C )  .P.  A
)  +P.  ( y  .P.  x ) )  =  ( A  +P.  (
y  .P.  x )
) )
3720, 23, 363eqtr2d 2179 . . . . . 6  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e. 
P. )  /\  ( C  .P.  A )  <P 
( C  .P.  B
) )  /\  (
y  e.  P.  /\  ( C  .P.  y )  =  1P ) )  /\  ( x  e. 
P.  /\  ( ( C  .P.  A )  +P.  x )  =  ( C  .P.  B ) ) )  ->  (
y  .P.  ( ( C  .P.  A )  +P.  x ) )  =  ( A  +P.  (
y  .P.  x )
) )
3827oveq1d 5797 . . . . . . 7  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e. 
P. )  /\  ( C  .P.  A )  <P 
( C  .P.  B
) )  /\  (
y  e.  P.  /\  ( C  .P.  y )  =  1P ) )  /\  ( x  e. 
P.  /\  ( ( C  .P.  A )  +P.  x )  =  ( C  .P.  B ) ) )  ->  (
( y  .P.  C
)  .P.  B )  =  ( 1P  .P.  B ) )
396simp2d 995 . . . . . . . 8  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e. 
P. )  /\  ( C  .P.  A )  <P 
( C  .P.  B
) )  /\  (
y  e.  P.  /\  ( C  .P.  y )  =  1P ) )  /\  ( x  e. 
P.  /\  ( ( C  .P.  A )  +P.  x )  =  ( C  .P.  B ) ) )  ->  B  e.  P. )
40 mulassprg 7413 . . . . . . . 8  |-  ( ( y  e.  P.  /\  C  e.  P.  /\  B  e.  P. )  ->  (
( y  .P.  C
)  .P.  B )  =  ( y  .P.  ( C  .P.  B
) ) )
418, 16, 39, 40syl3anc 1217 . . . . . . 7  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e. 
P. )  /\  ( C  .P.  A )  <P 
( C  .P.  B
) )  /\  (
y  e.  P.  /\  ( C  .P.  y )  =  1P ) )  /\  ( x  e. 
P.  /\  ( ( C  .P.  A )  +P.  x )  =  ( C  .P.  B ) ) )  ->  (
( y  .P.  C
)  .P.  B )  =  ( y  .P.  ( C  .P.  B
) ) )
42 mulcomprg 7412 . . . . . . . . . 10  |-  ( ( B  e.  P.  /\  1P  e.  P. )  -> 
( B  .P.  1P )  =  ( 1P  .P.  B ) )
4329, 42mpan2 422 . . . . . . . . 9  |-  ( B  e.  P.  ->  ( B  .P.  1P )  =  ( 1P  .P.  B
) )
44 1idpr 7424 . . . . . . . . 9  |-  ( B  e.  P.  ->  ( B  .P.  1P )  =  B )
4543, 44eqtr3d 2175 . . . . . . . 8  |-  ( B  e.  P.  ->  ( 1P  .P.  B )  =  B )
4639, 45syl 14 . . . . . . 7  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e. 
P. )  /\  ( C  .P.  A )  <P 
( C  .P.  B
) )  /\  (
y  e.  P.  /\  ( C  .P.  y )  =  1P ) )  /\  ( x  e. 
P.  /\  ( ( C  .P.  A )  +P.  x )  =  ( C  .P.  B ) ) )  ->  ( 1P  .P.  B )  =  B )
4738, 41, 463eqtr3d 2181 . . . . . 6  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e. 
P. )  /\  ( C  .P.  A )  <P 
( C  .P.  B
) )  /\  (
y  e.  P.  /\  ( C  .P.  y )  =  1P ) )  /\  ( x  e. 
P.  /\  ( ( C  .P.  A )  +P.  x )  =  ( C  .P.  B ) ) )  ->  (
y  .P.  ( C  .P.  B ) )  =  B )
4815, 37, 473eqtr3d 2181 . . . . 5  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e. 
P. )  /\  ( C  .P.  A )  <P 
( C  .P.  B
) )  /\  (
y  e.  P.  /\  ( C  .P.  y )  =  1P ) )  /\  ( x  e. 
P.  /\  ( ( C  .P.  A )  +P.  x )  =  ( C  .P.  B ) ) )  ->  ( A  +P.  ( y  .P.  x ) )  =  B )
4913, 48breqtrd 3962 . . . 4  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e. 
P. )  /\  ( C  .P.  A )  <P 
( C  .P.  B
) )  /\  (
y  e.  P.  /\  ( C  .P.  y )  =  1P ) )  /\  ( x  e. 
P.  /\  ( ( C  .P.  A )  +P.  x )  =  ( C  .P.  B ) ) )  ->  A  <P  B )
505, 49rexlimddv 2557 . . 3  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( C  .P.  A )  <P  ( C  .P.  B ) )  /\  ( y  e.  P.  /\  ( C  .P.  y
)  =  1P ) )  ->  A  <P  B )
513, 50rexlimddv 2557 . 2  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( C  .P.  A
)  <P  ( C  .P.  B ) )  ->  A  <P  B )
5251ex 114 1  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  (
( C  .P.  A
)  <P  ( C  .P.  B )  ->  A  <P  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 963    = wceq 1332    e. wcel 1481   E.wrex 2418   class class class wbr 3937  (class class class)co 5782   P.cnp 7123   1Pc1p 7124    +P. cpp 7125    .P. cmp 7126    <P cltp 7127
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-eprel 4219  df-id 4223  df-po 4226  df-iso 4227  df-iord 4296  df-on 4298  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-recs 6210  df-irdg 6275  df-1o 6321  df-2o 6322  df-oadd 6325  df-omul 6326  df-er 6437  df-ec 6439  df-qs 6443  df-ni 7136  df-pli 7137  df-mi 7138  df-lti 7139  df-plpq 7176  df-mpq 7177  df-enq 7179  df-nqqs 7180  df-plqqs 7181  df-mqqs 7182  df-1nqqs 7183  df-rq 7184  df-ltnqqs 7185  df-enq0 7256  df-nq0 7257  df-0nq0 7258  df-plq0 7259  df-mq0 7260  df-inp 7298  df-i1p 7299  df-iplp 7300  df-imp 7301  df-iltp 7302
This theorem is referenced by:  mulextsr1lem  7612
  Copyright terms: Public domain W3C validator