| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ltmprr | Unicode version | ||
| Description: Ordering property of multiplication. (Contributed by Jim Kingdon, 18-Feb-2020.) |
| Ref | Expression |
|---|---|
| ltmprr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | recexpr 7705 |
. . . . 5
| |
| 2 | 1 | 3ad2ant3 1022 |
. . . 4
|
| 3 | 2 | adantr 276 |
. . 3
|
| 4 | ltexpri 7680 |
. . . . 5
| |
| 5 | 4 | ad2antlr 489 |
. . . 4
|
| 6 | simplll 533 |
. . . . . . 7
| |
| 7 | 6 | simp1d 1011 |
. . . . . 6
|
| 8 | simplrl 535 |
. . . . . . 7
| |
| 9 | simprl 529 |
. . . . . . 7
| |
| 10 | mulclpr 7639 |
. . . . . . 7
| |
| 11 | 8, 9, 10 | syl2anc 411 |
. . . . . 6
|
| 12 | ltaddpr 7664 |
. . . . . 6
| |
| 13 | 7, 11, 12 | syl2anc 411 |
. . . . 5
|
| 14 | simprr 531 |
. . . . . . 7
| |
| 15 | 14 | oveq2d 5938 |
. . . . . 6
|
| 16 | 6 | simp3d 1013 |
. . . . . . . . 9
|
| 17 | mulclpr 7639 |
. . . . . . . . 9
| |
| 18 | 16, 7, 17 | syl2anc 411 |
. . . . . . . 8
|
| 19 | distrprg 7655 |
. . . . . . . 8
| |
| 20 | 8, 18, 9, 19 | syl3anc 1249 |
. . . . . . 7
|
| 21 | mulassprg 7648 |
. . . . . . . . 9
| |
| 22 | 8, 16, 7, 21 | syl3anc 1249 |
. . . . . . . 8
|
| 23 | 22 | oveq1d 5937 |
. . . . . . 7
|
| 24 | mulcomprg 7647 |
. . . . . . . . . . . 12
| |
| 25 | 8, 16, 24 | syl2anc 411 |
. . . . . . . . . . 11
|
| 26 | simplrr 536 |
. . . . . . . . . . 11
| |
| 27 | 25, 26 | eqtrd 2229 |
. . . . . . . . . 10
|
| 28 | 27 | oveq1d 5937 |
. . . . . . . . 9
|
| 29 | 1pr 7621 |
. . . . . . . . . . . 12
| |
| 30 | mulcomprg 7647 |
. . . . . . . . . . . 12
| |
| 31 | 29, 30 | mpan2 425 |
. . . . . . . . . . 11
|
| 32 | 1idpr 7659 |
. . . . . . . . . . 11
| |
| 33 | 31, 32 | eqtr3d 2231 |
. . . . . . . . . 10
|
| 34 | 7, 33 | syl 14 |
. . . . . . . . 9
|
| 35 | 28, 34 | eqtrd 2229 |
. . . . . . . 8
|
| 36 | 35 | oveq1d 5937 |
. . . . . . 7
|
| 37 | 20, 23, 36 | 3eqtr2d 2235 |
. . . . . 6
|
| 38 | 27 | oveq1d 5937 |
. . . . . . 7
|
| 39 | 6 | simp2d 1012 |
. . . . . . . 8
|
| 40 | mulassprg 7648 |
. . . . . . . 8
| |
| 41 | 8, 16, 39, 40 | syl3anc 1249 |
. . . . . . 7
|
| 42 | mulcomprg 7647 |
. . . . . . . . . 10
| |
| 43 | 29, 42 | mpan2 425 |
. . . . . . . . 9
|
| 44 | 1idpr 7659 |
. . . . . . . . 9
| |
| 45 | 43, 44 | eqtr3d 2231 |
. . . . . . . 8
|
| 46 | 39, 45 | syl 14 |
. . . . . . 7
|
| 47 | 38, 41, 46 | 3eqtr3d 2237 |
. . . . . 6
|
| 48 | 15, 37, 47 | 3eqtr3d 2237 |
. . . . 5
|
| 49 | 13, 48 | breqtrd 4059 |
. . . 4
|
| 50 | 5, 49 | rexlimddv 2619 |
. . 3
|
| 51 | 3, 50 | rexlimddv 2619 |
. 2
|
| 52 | 51 | ex 115 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-eprel 4324 df-id 4328 df-po 4331 df-iso 4332 df-iord 4401 df-on 4403 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-recs 6363 df-irdg 6428 df-1o 6474 df-2o 6475 df-oadd 6478 df-omul 6479 df-er 6592 df-ec 6594 df-qs 6598 df-ni 7371 df-pli 7372 df-mi 7373 df-lti 7374 df-plpq 7411 df-mpq 7412 df-enq 7414 df-nqqs 7415 df-plqqs 7416 df-mqqs 7417 df-1nqqs 7418 df-rq 7419 df-ltnqqs 7420 df-enq0 7491 df-nq0 7492 df-0nq0 7493 df-plq0 7494 df-mq0 7495 df-inp 7533 df-i1p 7534 df-iplp 7535 df-imp 7536 df-iltp 7537 |
| This theorem is referenced by: mulextsr1lem 7847 |
| Copyright terms: Public domain | W3C validator |