ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltmprr Unicode version

Theorem ltmprr 7755
Description: Ordering property of multiplication. (Contributed by Jim Kingdon, 18-Feb-2020.)
Assertion
Ref Expression
ltmprr  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  (
( C  .P.  A
)  <P  ( C  .P.  B )  ->  A  <P  B ) )

Proof of Theorem ltmprr
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 recexpr 7751 . . . . 5  |-  ( C  e.  P.  ->  E. y  e.  P.  ( C  .P.  y )  =  1P )
213ad2ant3 1023 . . . 4  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  E. y  e.  P.  ( C  .P.  y )  =  1P )
32adantr 276 . . 3  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( C  .P.  A
)  <P  ( C  .P.  B ) )  ->  E. y  e.  P.  ( C  .P.  y )  =  1P )
4 ltexpri 7726 . . . . 5  |-  ( ( C  .P.  A ) 
<P  ( C  .P.  B
)  ->  E. x  e.  P.  ( ( C  .P.  A )  +P.  x )  =  ( C  .P.  B ) )
54ad2antlr 489 . . . 4  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( C  .P.  A )  <P  ( C  .P.  B ) )  /\  ( y  e.  P.  /\  ( C  .P.  y
)  =  1P ) )  ->  E. x  e.  P.  ( ( C  .P.  A )  +P.  x )  =  ( C  .P.  B ) )
6 simplll 533 . . . . . . 7  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e. 
P. )  /\  ( C  .P.  A )  <P 
( C  .P.  B
) )  /\  (
y  e.  P.  /\  ( C  .P.  y )  =  1P ) )  /\  ( x  e. 
P.  /\  ( ( C  .P.  A )  +P.  x )  =  ( C  .P.  B ) ) )  ->  ( A  e.  P.  /\  B  e.  P.  /\  C  e. 
P. ) )
76simp1d 1012 . . . . . 6  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e. 
P. )  /\  ( C  .P.  A )  <P 
( C  .P.  B
) )  /\  (
y  e.  P.  /\  ( C  .P.  y )  =  1P ) )  /\  ( x  e. 
P.  /\  ( ( C  .P.  A )  +P.  x )  =  ( C  .P.  B ) ) )  ->  A  e.  P. )
8 simplrl 535 . . . . . . 7  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e. 
P. )  /\  ( C  .P.  A )  <P 
( C  .P.  B
) )  /\  (
y  e.  P.  /\  ( C  .P.  y )  =  1P ) )  /\  ( x  e. 
P.  /\  ( ( C  .P.  A )  +P.  x )  =  ( C  .P.  B ) ) )  ->  y  e.  P. )
9 simprl 529 . . . . . . 7  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e. 
P. )  /\  ( C  .P.  A )  <P 
( C  .P.  B
) )  /\  (
y  e.  P.  /\  ( C  .P.  y )  =  1P ) )  /\  ( x  e. 
P.  /\  ( ( C  .P.  A )  +P.  x )  =  ( C  .P.  B ) ) )  ->  x  e.  P. )
10 mulclpr 7685 . . . . . . 7  |-  ( ( y  e.  P.  /\  x  e.  P. )  ->  ( y  .P.  x
)  e.  P. )
118, 9, 10syl2anc 411 . . . . . 6  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e. 
P. )  /\  ( C  .P.  A )  <P 
( C  .P.  B
) )  /\  (
y  e.  P.  /\  ( C  .P.  y )  =  1P ) )  /\  ( x  e. 
P.  /\  ( ( C  .P.  A )  +P.  x )  =  ( C  .P.  B ) ) )  ->  (
y  .P.  x )  e.  P. )
12 ltaddpr 7710 . . . . . 6  |-  ( ( A  e.  P.  /\  ( y  .P.  x
)  e.  P. )  ->  A  <P  ( A  +P.  ( y  .P.  x
) ) )
137, 11, 12syl2anc 411 . . . . 5  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e. 
P. )  /\  ( C  .P.  A )  <P 
( C  .P.  B
) )  /\  (
y  e.  P.  /\  ( C  .P.  y )  =  1P ) )  /\  ( x  e. 
P.  /\  ( ( C  .P.  A )  +P.  x )  =  ( C  .P.  B ) ) )  ->  A  <P  ( A  +P.  (
y  .P.  x )
) )
14 simprr 531 . . . . . . 7  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e. 
P. )  /\  ( C  .P.  A )  <P 
( C  .P.  B
) )  /\  (
y  e.  P.  /\  ( C  .P.  y )  =  1P ) )  /\  ( x  e. 
P.  /\  ( ( C  .P.  A )  +P.  x )  =  ( C  .P.  B ) ) )  ->  (
( C  .P.  A
)  +P.  x )  =  ( C  .P.  B ) )
1514oveq2d 5960 . . . . . 6  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e. 
P. )  /\  ( C  .P.  A )  <P 
( C  .P.  B
) )  /\  (
y  e.  P.  /\  ( C  .P.  y )  =  1P ) )  /\  ( x  e. 
P.  /\  ( ( C  .P.  A )  +P.  x )  =  ( C  .P.  B ) ) )  ->  (
y  .P.  ( ( C  .P.  A )  +P.  x ) )  =  ( y  .P.  ( C  .P.  B ) ) )
166simp3d 1014 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e. 
P. )  /\  ( C  .P.  A )  <P 
( C  .P.  B
) )  /\  (
y  e.  P.  /\  ( C  .P.  y )  =  1P ) )  /\  ( x  e. 
P.  /\  ( ( C  .P.  A )  +P.  x )  =  ( C  .P.  B ) ) )  ->  C  e.  P. )
17 mulclpr 7685 . . . . . . . . 9  |-  ( ( C  e.  P.  /\  A  e.  P. )  ->  ( C  .P.  A
)  e.  P. )
1816, 7, 17syl2anc 411 . . . . . . . 8  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e. 
P. )  /\  ( C  .P.  A )  <P 
( C  .P.  B
) )  /\  (
y  e.  P.  /\  ( C  .P.  y )  =  1P ) )  /\  ( x  e. 
P.  /\  ( ( C  .P.  A )  +P.  x )  =  ( C  .P.  B ) ) )  ->  ( C  .P.  A )  e. 
P. )
19 distrprg 7701 . . . . . . . 8  |-  ( ( y  e.  P.  /\  ( C  .P.  A )  e.  P.  /\  x  e.  P. )  ->  (
y  .P.  ( ( C  .P.  A )  +P.  x ) )  =  ( ( y  .P.  ( C  .P.  A
) )  +P.  (
y  .P.  x )
) )
208, 18, 9, 19syl3anc 1250 . . . . . . 7  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e. 
P. )  /\  ( C  .P.  A )  <P 
( C  .P.  B
) )  /\  (
y  e.  P.  /\  ( C  .P.  y )  =  1P ) )  /\  ( x  e. 
P.  /\  ( ( C  .P.  A )  +P.  x )  =  ( C  .P.  B ) ) )  ->  (
y  .P.  ( ( C  .P.  A )  +P.  x ) )  =  ( ( y  .P.  ( C  .P.  A
) )  +P.  (
y  .P.  x )
) )
21 mulassprg 7694 . . . . . . . . 9  |-  ( ( y  e.  P.  /\  C  e.  P.  /\  A  e.  P. )  ->  (
( y  .P.  C
)  .P.  A )  =  ( y  .P.  ( C  .P.  A
) ) )
228, 16, 7, 21syl3anc 1250 . . . . . . . 8  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e. 
P. )  /\  ( C  .P.  A )  <P 
( C  .P.  B
) )  /\  (
y  e.  P.  /\  ( C  .P.  y )  =  1P ) )  /\  ( x  e. 
P.  /\  ( ( C  .P.  A )  +P.  x )  =  ( C  .P.  B ) ) )  ->  (
( y  .P.  C
)  .P.  A )  =  ( y  .P.  ( C  .P.  A
) ) )
2322oveq1d 5959 . . . . . . 7  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e. 
P. )  /\  ( C  .P.  A )  <P 
( C  .P.  B
) )  /\  (
y  e.  P.  /\  ( C  .P.  y )  =  1P ) )  /\  ( x  e. 
P.  /\  ( ( C  .P.  A )  +P.  x )  =  ( C  .P.  B ) ) )  ->  (
( ( y  .P. 
C )  .P.  A
)  +P.  ( y  .P.  x ) )  =  ( ( y  .P.  ( C  .P.  A
) )  +P.  (
y  .P.  x )
) )
24 mulcomprg 7693 . . . . . . . . . . . 12  |-  ( ( y  e.  P.  /\  C  e.  P. )  ->  ( y  .P.  C
)  =  ( C  .P.  y ) )
258, 16, 24syl2anc 411 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e. 
P. )  /\  ( C  .P.  A )  <P 
( C  .P.  B
) )  /\  (
y  e.  P.  /\  ( C  .P.  y )  =  1P ) )  /\  ( x  e. 
P.  /\  ( ( C  .P.  A )  +P.  x )  =  ( C  .P.  B ) ) )  ->  (
y  .P.  C )  =  ( C  .P.  y ) )
26 simplrr 536 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e. 
P. )  /\  ( C  .P.  A )  <P 
( C  .P.  B
) )  /\  (
y  e.  P.  /\  ( C  .P.  y )  =  1P ) )  /\  ( x  e. 
P.  /\  ( ( C  .P.  A )  +P.  x )  =  ( C  .P.  B ) ) )  ->  ( C  .P.  y )  =  1P )
2725, 26eqtrd 2238 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e. 
P. )  /\  ( C  .P.  A )  <P 
( C  .P.  B
) )  /\  (
y  e.  P.  /\  ( C  .P.  y )  =  1P ) )  /\  ( x  e. 
P.  /\  ( ( C  .P.  A )  +P.  x )  =  ( C  .P.  B ) ) )  ->  (
y  .P.  C )  =  1P )
2827oveq1d 5959 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e. 
P. )  /\  ( C  .P.  A )  <P 
( C  .P.  B
) )  /\  (
y  e.  P.  /\  ( C  .P.  y )  =  1P ) )  /\  ( x  e. 
P.  /\  ( ( C  .P.  A )  +P.  x )  =  ( C  .P.  B ) ) )  ->  (
( y  .P.  C
)  .P.  A )  =  ( 1P  .P.  A ) )
29 1pr 7667 . . . . . . . . . . . 12  |-  1P  e.  P.
30 mulcomprg 7693 . . . . . . . . . . . 12  |-  ( ( A  e.  P.  /\  1P  e.  P. )  -> 
( A  .P.  1P )  =  ( 1P  .P.  A ) )
3129, 30mpan2 425 . . . . . . . . . . 11  |-  ( A  e.  P.  ->  ( A  .P.  1P )  =  ( 1P  .P.  A
) )
32 1idpr 7705 . . . . . . . . . . 11  |-  ( A  e.  P.  ->  ( A  .P.  1P )  =  A )
3331, 32eqtr3d 2240 . . . . . . . . . 10  |-  ( A  e.  P.  ->  ( 1P  .P.  A )  =  A )
347, 33syl 14 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e. 
P. )  /\  ( C  .P.  A )  <P 
( C  .P.  B
) )  /\  (
y  e.  P.  /\  ( C  .P.  y )  =  1P ) )  /\  ( x  e. 
P.  /\  ( ( C  .P.  A )  +P.  x )  =  ( C  .P.  B ) ) )  ->  ( 1P  .P.  A )  =  A )
3528, 34eqtrd 2238 . . . . . . . 8  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e. 
P. )  /\  ( C  .P.  A )  <P 
( C  .P.  B
) )  /\  (
y  e.  P.  /\  ( C  .P.  y )  =  1P ) )  /\  ( x  e. 
P.  /\  ( ( C  .P.  A )  +P.  x )  =  ( C  .P.  B ) ) )  ->  (
( y  .P.  C
)  .P.  A )  =  A )
3635oveq1d 5959 . . . . . . 7  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e. 
P. )  /\  ( C  .P.  A )  <P 
( C  .P.  B
) )  /\  (
y  e.  P.  /\  ( C  .P.  y )  =  1P ) )  /\  ( x  e. 
P.  /\  ( ( C  .P.  A )  +P.  x )  =  ( C  .P.  B ) ) )  ->  (
( ( y  .P. 
C )  .P.  A
)  +P.  ( y  .P.  x ) )  =  ( A  +P.  (
y  .P.  x )
) )
3720, 23, 363eqtr2d 2244 . . . . . 6  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e. 
P. )  /\  ( C  .P.  A )  <P 
( C  .P.  B
) )  /\  (
y  e.  P.  /\  ( C  .P.  y )  =  1P ) )  /\  ( x  e. 
P.  /\  ( ( C  .P.  A )  +P.  x )  =  ( C  .P.  B ) ) )  ->  (
y  .P.  ( ( C  .P.  A )  +P.  x ) )  =  ( A  +P.  (
y  .P.  x )
) )
3827oveq1d 5959 . . . . . . 7  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e. 
P. )  /\  ( C  .P.  A )  <P 
( C  .P.  B
) )  /\  (
y  e.  P.  /\  ( C  .P.  y )  =  1P ) )  /\  ( x  e. 
P.  /\  ( ( C  .P.  A )  +P.  x )  =  ( C  .P.  B ) ) )  ->  (
( y  .P.  C
)  .P.  B )  =  ( 1P  .P.  B ) )
396simp2d 1013 . . . . . . . 8  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e. 
P. )  /\  ( C  .P.  A )  <P 
( C  .P.  B
) )  /\  (
y  e.  P.  /\  ( C  .P.  y )  =  1P ) )  /\  ( x  e. 
P.  /\  ( ( C  .P.  A )  +P.  x )  =  ( C  .P.  B ) ) )  ->  B  e.  P. )
40 mulassprg 7694 . . . . . . . 8  |-  ( ( y  e.  P.  /\  C  e.  P.  /\  B  e.  P. )  ->  (
( y  .P.  C
)  .P.  B )  =  ( y  .P.  ( C  .P.  B
) ) )
418, 16, 39, 40syl3anc 1250 . . . . . . 7  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e. 
P. )  /\  ( C  .P.  A )  <P 
( C  .P.  B
) )  /\  (
y  e.  P.  /\  ( C  .P.  y )  =  1P ) )  /\  ( x  e. 
P.  /\  ( ( C  .P.  A )  +P.  x )  =  ( C  .P.  B ) ) )  ->  (
( y  .P.  C
)  .P.  B )  =  ( y  .P.  ( C  .P.  B
) ) )
42 mulcomprg 7693 . . . . . . . . . 10  |-  ( ( B  e.  P.  /\  1P  e.  P. )  -> 
( B  .P.  1P )  =  ( 1P  .P.  B ) )
4329, 42mpan2 425 . . . . . . . . 9  |-  ( B  e.  P.  ->  ( B  .P.  1P )  =  ( 1P  .P.  B
) )
44 1idpr 7705 . . . . . . . . 9  |-  ( B  e.  P.  ->  ( B  .P.  1P )  =  B )
4543, 44eqtr3d 2240 . . . . . . . 8  |-  ( B  e.  P.  ->  ( 1P  .P.  B )  =  B )
4639, 45syl 14 . . . . . . 7  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e. 
P. )  /\  ( C  .P.  A )  <P 
( C  .P.  B
) )  /\  (
y  e.  P.  /\  ( C  .P.  y )  =  1P ) )  /\  ( x  e. 
P.  /\  ( ( C  .P.  A )  +P.  x )  =  ( C  .P.  B ) ) )  ->  ( 1P  .P.  B )  =  B )
4738, 41, 463eqtr3d 2246 . . . . . 6  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e. 
P. )  /\  ( C  .P.  A )  <P 
( C  .P.  B
) )  /\  (
y  e.  P.  /\  ( C  .P.  y )  =  1P ) )  /\  ( x  e. 
P.  /\  ( ( C  .P.  A )  +P.  x )  =  ( C  .P.  B ) ) )  ->  (
y  .P.  ( C  .P.  B ) )  =  B )
4815, 37, 473eqtr3d 2246 . . . . 5  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e. 
P. )  /\  ( C  .P.  A )  <P 
( C  .P.  B
) )  /\  (
y  e.  P.  /\  ( C  .P.  y )  =  1P ) )  /\  ( x  e. 
P.  /\  ( ( C  .P.  A )  +P.  x )  =  ( C  .P.  B ) ) )  ->  ( A  +P.  ( y  .P.  x ) )  =  B )
4913, 48breqtrd 4070 . . . 4  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e. 
P. )  /\  ( C  .P.  A )  <P 
( C  .P.  B
) )  /\  (
y  e.  P.  /\  ( C  .P.  y )  =  1P ) )  /\  ( x  e. 
P.  /\  ( ( C  .P.  A )  +P.  x )  =  ( C  .P.  B ) ) )  ->  A  <P  B )
505, 49rexlimddv 2628 . . 3  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( C  .P.  A )  <P  ( C  .P.  B ) )  /\  ( y  e.  P.  /\  ( C  .P.  y
)  =  1P ) )  ->  A  <P  B )
513, 50rexlimddv 2628 . 2  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( C  .P.  A
)  <P  ( C  .P.  B ) )  ->  A  <P  B )
5251ex 115 1  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  (
( C  .P.  A
)  <P  ( C  .P.  B )  ->  A  <P  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 981    = wceq 1373    e. wcel 2176   E.wrex 2485   class class class wbr 4044  (class class class)co 5944   P.cnp 7404   1Pc1p 7405    +P. cpp 7406    .P. cmp 7407    <P cltp 7408
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-iinf 4636
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-eprel 4336  df-id 4340  df-po 4343  df-iso 4344  df-iord 4413  df-on 4415  df-suc 4418  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-recs 6391  df-irdg 6456  df-1o 6502  df-2o 6503  df-oadd 6506  df-omul 6507  df-er 6620  df-ec 6622  df-qs 6626  df-ni 7417  df-pli 7418  df-mi 7419  df-lti 7420  df-plpq 7457  df-mpq 7458  df-enq 7460  df-nqqs 7461  df-plqqs 7462  df-mqqs 7463  df-1nqqs 7464  df-rq 7465  df-ltnqqs 7466  df-enq0 7537  df-nq0 7538  df-0nq0 7539  df-plq0 7540  df-mq0 7541  df-inp 7579  df-i1p 7580  df-iplp 7581  df-imp 7582  df-iltp 7583
This theorem is referenced by:  mulextsr1lem  7893
  Copyright terms: Public domain W3C validator