ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltmprr Unicode version

Theorem ltmprr 7298
Description: Ordering property of multiplication. (Contributed by Jim Kingdon, 18-Feb-2020.)
Assertion
Ref Expression
ltmprr  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  (
( C  .P.  A
)  <P  ( C  .P.  B )  ->  A  <P  B ) )

Proof of Theorem ltmprr
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 recexpr 7294 . . . . 5  |-  ( C  e.  P.  ->  E. y  e.  P.  ( C  .P.  y )  =  1P )
213ad2ant3 969 . . . 4  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  E. y  e.  P.  ( C  .P.  y )  =  1P )
32adantr 271 . . 3  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( C  .P.  A
)  <P  ( C  .P.  B ) )  ->  E. y  e.  P.  ( C  .P.  y )  =  1P )
4 ltexpri 7269 . . . . 5  |-  ( ( C  .P.  A ) 
<P  ( C  .P.  B
)  ->  E. x  e.  P.  ( ( C  .P.  A )  +P.  x )  =  ( C  .P.  B ) )
54ad2antlr 474 . . . 4  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( C  .P.  A )  <P  ( C  .P.  B ) )  /\  ( y  e.  P.  /\  ( C  .P.  y
)  =  1P ) )  ->  E. x  e.  P.  ( ( C  .P.  A )  +P.  x )  =  ( C  .P.  B ) )
6 simplll 501 . . . . . . 7  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e. 
P. )  /\  ( C  .P.  A )  <P 
( C  .P.  B
) )  /\  (
y  e.  P.  /\  ( C  .P.  y )  =  1P ) )  /\  ( x  e. 
P.  /\  ( ( C  .P.  A )  +P.  x )  =  ( C  .P.  B ) ) )  ->  ( A  e.  P.  /\  B  e.  P.  /\  C  e. 
P. ) )
76simp1d 958 . . . . . 6  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e. 
P. )  /\  ( C  .P.  A )  <P 
( C  .P.  B
) )  /\  (
y  e.  P.  /\  ( C  .P.  y )  =  1P ) )  /\  ( x  e. 
P.  /\  ( ( C  .P.  A )  +P.  x )  =  ( C  .P.  B ) ) )  ->  A  e.  P. )
8 simplrl 503 . . . . . . 7  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e. 
P. )  /\  ( C  .P.  A )  <P 
( C  .P.  B
) )  /\  (
y  e.  P.  /\  ( C  .P.  y )  =  1P ) )  /\  ( x  e. 
P.  /\  ( ( C  .P.  A )  +P.  x )  =  ( C  .P.  B ) ) )  ->  y  e.  P. )
9 simprl 499 . . . . . . 7  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e. 
P. )  /\  ( C  .P.  A )  <P 
( C  .P.  B
) )  /\  (
y  e.  P.  /\  ( C  .P.  y )  =  1P ) )  /\  ( x  e. 
P.  /\  ( ( C  .P.  A )  +P.  x )  =  ( C  .P.  B ) ) )  ->  x  e.  P. )
10 mulclpr 7228 . . . . . . 7  |-  ( ( y  e.  P.  /\  x  e.  P. )  ->  ( y  .P.  x
)  e.  P. )
118, 9, 10syl2anc 404 . . . . . 6  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e. 
P. )  /\  ( C  .P.  A )  <P 
( C  .P.  B
) )  /\  (
y  e.  P.  /\  ( C  .P.  y )  =  1P ) )  /\  ( x  e. 
P.  /\  ( ( C  .P.  A )  +P.  x )  =  ( C  .P.  B ) ) )  ->  (
y  .P.  x )  e.  P. )
12 ltaddpr 7253 . . . . . 6  |-  ( ( A  e.  P.  /\  ( y  .P.  x
)  e.  P. )  ->  A  <P  ( A  +P.  ( y  .P.  x
) ) )
137, 11, 12syl2anc 404 . . . . 5  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e. 
P. )  /\  ( C  .P.  A )  <P 
( C  .P.  B
) )  /\  (
y  e.  P.  /\  ( C  .P.  y )  =  1P ) )  /\  ( x  e. 
P.  /\  ( ( C  .P.  A )  +P.  x )  =  ( C  .P.  B ) ) )  ->  A  <P  ( A  +P.  (
y  .P.  x )
) )
14 simprr 500 . . . . . . 7  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e. 
P. )  /\  ( C  .P.  A )  <P 
( C  .P.  B
) )  /\  (
y  e.  P.  /\  ( C  .P.  y )  =  1P ) )  /\  ( x  e. 
P.  /\  ( ( C  .P.  A )  +P.  x )  =  ( C  .P.  B ) ) )  ->  (
( C  .P.  A
)  +P.  x )  =  ( C  .P.  B ) )
1514oveq2d 5706 . . . . . 6  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e. 
P. )  /\  ( C  .P.  A )  <P 
( C  .P.  B
) )  /\  (
y  e.  P.  /\  ( C  .P.  y )  =  1P ) )  /\  ( x  e. 
P.  /\  ( ( C  .P.  A )  +P.  x )  =  ( C  .P.  B ) ) )  ->  (
y  .P.  ( ( C  .P.  A )  +P.  x ) )  =  ( y  .P.  ( C  .P.  B ) ) )
166simp3d 960 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e. 
P. )  /\  ( C  .P.  A )  <P 
( C  .P.  B
) )  /\  (
y  e.  P.  /\  ( C  .P.  y )  =  1P ) )  /\  ( x  e. 
P.  /\  ( ( C  .P.  A )  +P.  x )  =  ( C  .P.  B ) ) )  ->  C  e.  P. )
17 mulclpr 7228 . . . . . . . . 9  |-  ( ( C  e.  P.  /\  A  e.  P. )  ->  ( C  .P.  A
)  e.  P. )
1816, 7, 17syl2anc 404 . . . . . . . 8  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e. 
P. )  /\  ( C  .P.  A )  <P 
( C  .P.  B
) )  /\  (
y  e.  P.  /\  ( C  .P.  y )  =  1P ) )  /\  ( x  e. 
P.  /\  ( ( C  .P.  A )  +P.  x )  =  ( C  .P.  B ) ) )  ->  ( C  .P.  A )  e. 
P. )
19 distrprg 7244 . . . . . . . 8  |-  ( ( y  e.  P.  /\  ( C  .P.  A )  e.  P.  /\  x  e.  P. )  ->  (
y  .P.  ( ( C  .P.  A )  +P.  x ) )  =  ( ( y  .P.  ( C  .P.  A
) )  +P.  (
y  .P.  x )
) )
208, 18, 9, 19syl3anc 1181 . . . . . . 7  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e. 
P. )  /\  ( C  .P.  A )  <P 
( C  .P.  B
) )  /\  (
y  e.  P.  /\  ( C  .P.  y )  =  1P ) )  /\  ( x  e. 
P.  /\  ( ( C  .P.  A )  +P.  x )  =  ( C  .P.  B ) ) )  ->  (
y  .P.  ( ( C  .P.  A )  +P.  x ) )  =  ( ( y  .P.  ( C  .P.  A
) )  +P.  (
y  .P.  x )
) )
21 mulassprg 7237 . . . . . . . . 9  |-  ( ( y  e.  P.  /\  C  e.  P.  /\  A  e.  P. )  ->  (
( y  .P.  C
)  .P.  A )  =  ( y  .P.  ( C  .P.  A
) ) )
228, 16, 7, 21syl3anc 1181 . . . . . . . 8  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e. 
P. )  /\  ( C  .P.  A )  <P 
( C  .P.  B
) )  /\  (
y  e.  P.  /\  ( C  .P.  y )  =  1P ) )  /\  ( x  e. 
P.  /\  ( ( C  .P.  A )  +P.  x )  =  ( C  .P.  B ) ) )  ->  (
( y  .P.  C
)  .P.  A )  =  ( y  .P.  ( C  .P.  A
) ) )
2322oveq1d 5705 . . . . . . 7  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e. 
P. )  /\  ( C  .P.  A )  <P 
( C  .P.  B
) )  /\  (
y  e.  P.  /\  ( C  .P.  y )  =  1P ) )  /\  ( x  e. 
P.  /\  ( ( C  .P.  A )  +P.  x )  =  ( C  .P.  B ) ) )  ->  (
( ( y  .P. 
C )  .P.  A
)  +P.  ( y  .P.  x ) )  =  ( ( y  .P.  ( C  .P.  A
) )  +P.  (
y  .P.  x )
) )
24 mulcomprg 7236 . . . . . . . . . . . 12  |-  ( ( y  e.  P.  /\  C  e.  P. )  ->  ( y  .P.  C
)  =  ( C  .P.  y ) )
258, 16, 24syl2anc 404 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e. 
P. )  /\  ( C  .P.  A )  <P 
( C  .P.  B
) )  /\  (
y  e.  P.  /\  ( C  .P.  y )  =  1P ) )  /\  ( x  e. 
P.  /\  ( ( C  .P.  A )  +P.  x )  =  ( C  .P.  B ) ) )  ->  (
y  .P.  C )  =  ( C  .P.  y ) )
26 simplrr 504 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e. 
P. )  /\  ( C  .P.  A )  <P 
( C  .P.  B
) )  /\  (
y  e.  P.  /\  ( C  .P.  y )  =  1P ) )  /\  ( x  e. 
P.  /\  ( ( C  .P.  A )  +P.  x )  =  ( C  .P.  B ) ) )  ->  ( C  .P.  y )  =  1P )
2725, 26eqtrd 2127 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e. 
P. )  /\  ( C  .P.  A )  <P 
( C  .P.  B
) )  /\  (
y  e.  P.  /\  ( C  .P.  y )  =  1P ) )  /\  ( x  e. 
P.  /\  ( ( C  .P.  A )  +P.  x )  =  ( C  .P.  B ) ) )  ->  (
y  .P.  C )  =  1P )
2827oveq1d 5705 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e. 
P. )  /\  ( C  .P.  A )  <P 
( C  .P.  B
) )  /\  (
y  e.  P.  /\  ( C  .P.  y )  =  1P ) )  /\  ( x  e. 
P.  /\  ( ( C  .P.  A )  +P.  x )  =  ( C  .P.  B ) ) )  ->  (
( y  .P.  C
)  .P.  A )  =  ( 1P  .P.  A ) )
29 1pr 7210 . . . . . . . . . . . 12  |-  1P  e.  P.
30 mulcomprg 7236 . . . . . . . . . . . 12  |-  ( ( A  e.  P.  /\  1P  e.  P. )  -> 
( A  .P.  1P )  =  ( 1P  .P.  A ) )
3129, 30mpan2 417 . . . . . . . . . . 11  |-  ( A  e.  P.  ->  ( A  .P.  1P )  =  ( 1P  .P.  A
) )
32 1idpr 7248 . . . . . . . . . . 11  |-  ( A  e.  P.  ->  ( A  .P.  1P )  =  A )
3331, 32eqtr3d 2129 . . . . . . . . . 10  |-  ( A  e.  P.  ->  ( 1P  .P.  A )  =  A )
347, 33syl 14 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e. 
P. )  /\  ( C  .P.  A )  <P 
( C  .P.  B
) )  /\  (
y  e.  P.  /\  ( C  .P.  y )  =  1P ) )  /\  ( x  e. 
P.  /\  ( ( C  .P.  A )  +P.  x )  =  ( C  .P.  B ) ) )  ->  ( 1P  .P.  A )  =  A )
3528, 34eqtrd 2127 . . . . . . . 8  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e. 
P. )  /\  ( C  .P.  A )  <P 
( C  .P.  B
) )  /\  (
y  e.  P.  /\  ( C  .P.  y )  =  1P ) )  /\  ( x  e. 
P.  /\  ( ( C  .P.  A )  +P.  x )  =  ( C  .P.  B ) ) )  ->  (
( y  .P.  C
)  .P.  A )  =  A )
3635oveq1d 5705 . . . . . . 7  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e. 
P. )  /\  ( C  .P.  A )  <P 
( C  .P.  B
) )  /\  (
y  e.  P.  /\  ( C  .P.  y )  =  1P ) )  /\  ( x  e. 
P.  /\  ( ( C  .P.  A )  +P.  x )  =  ( C  .P.  B ) ) )  ->  (
( ( y  .P. 
C )  .P.  A
)  +P.  ( y  .P.  x ) )  =  ( A  +P.  (
y  .P.  x )
) )
3720, 23, 363eqtr2d 2133 . . . . . 6  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e. 
P. )  /\  ( C  .P.  A )  <P 
( C  .P.  B
) )  /\  (
y  e.  P.  /\  ( C  .P.  y )  =  1P ) )  /\  ( x  e. 
P.  /\  ( ( C  .P.  A )  +P.  x )  =  ( C  .P.  B ) ) )  ->  (
y  .P.  ( ( C  .P.  A )  +P.  x ) )  =  ( A  +P.  (
y  .P.  x )
) )
3827oveq1d 5705 . . . . . . 7  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e. 
P. )  /\  ( C  .P.  A )  <P 
( C  .P.  B
) )  /\  (
y  e.  P.  /\  ( C  .P.  y )  =  1P ) )  /\  ( x  e. 
P.  /\  ( ( C  .P.  A )  +P.  x )  =  ( C  .P.  B ) ) )  ->  (
( y  .P.  C
)  .P.  B )  =  ( 1P  .P.  B ) )
396simp2d 959 . . . . . . . 8  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e. 
P. )  /\  ( C  .P.  A )  <P 
( C  .P.  B
) )  /\  (
y  e.  P.  /\  ( C  .P.  y )  =  1P ) )  /\  ( x  e. 
P.  /\  ( ( C  .P.  A )  +P.  x )  =  ( C  .P.  B ) ) )  ->  B  e.  P. )
40 mulassprg 7237 . . . . . . . 8  |-  ( ( y  e.  P.  /\  C  e.  P.  /\  B  e.  P. )  ->  (
( y  .P.  C
)  .P.  B )  =  ( y  .P.  ( C  .P.  B
) ) )
418, 16, 39, 40syl3anc 1181 . . . . . . 7  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e. 
P. )  /\  ( C  .P.  A )  <P 
( C  .P.  B
) )  /\  (
y  e.  P.  /\  ( C  .P.  y )  =  1P ) )  /\  ( x  e. 
P.  /\  ( ( C  .P.  A )  +P.  x )  =  ( C  .P.  B ) ) )  ->  (
( y  .P.  C
)  .P.  B )  =  ( y  .P.  ( C  .P.  B
) ) )
42 mulcomprg 7236 . . . . . . . . . 10  |-  ( ( B  e.  P.  /\  1P  e.  P. )  -> 
( B  .P.  1P )  =  ( 1P  .P.  B ) )
4329, 42mpan2 417 . . . . . . . . 9  |-  ( B  e.  P.  ->  ( B  .P.  1P )  =  ( 1P  .P.  B
) )
44 1idpr 7248 . . . . . . . . 9  |-  ( B  e.  P.  ->  ( B  .P.  1P )  =  B )
4543, 44eqtr3d 2129 . . . . . . . 8  |-  ( B  e.  P.  ->  ( 1P  .P.  B )  =  B )
4639, 45syl 14 . . . . . . 7  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e. 
P. )  /\  ( C  .P.  A )  <P 
( C  .P.  B
) )  /\  (
y  e.  P.  /\  ( C  .P.  y )  =  1P ) )  /\  ( x  e. 
P.  /\  ( ( C  .P.  A )  +P.  x )  =  ( C  .P.  B ) ) )  ->  ( 1P  .P.  B )  =  B )
4738, 41, 463eqtr3d 2135 . . . . . 6  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e. 
P. )  /\  ( C  .P.  A )  <P 
( C  .P.  B
) )  /\  (
y  e.  P.  /\  ( C  .P.  y )  =  1P ) )  /\  ( x  e. 
P.  /\  ( ( C  .P.  A )  +P.  x )  =  ( C  .P.  B ) ) )  ->  (
y  .P.  ( C  .P.  B ) )  =  B )
4815, 37, 473eqtr3d 2135 . . . . 5  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e. 
P. )  /\  ( C  .P.  A )  <P 
( C  .P.  B
) )  /\  (
y  e.  P.  /\  ( C  .P.  y )  =  1P ) )  /\  ( x  e. 
P.  /\  ( ( C  .P.  A )  +P.  x )  =  ( C  .P.  B ) ) )  ->  ( A  +P.  ( y  .P.  x ) )  =  B )
4913, 48breqtrd 3891 . . . 4  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e. 
P. )  /\  ( C  .P.  A )  <P 
( C  .P.  B
) )  /\  (
y  e.  P.  /\  ( C  .P.  y )  =  1P ) )  /\  ( x  e. 
P.  /\  ( ( C  .P.  A )  +P.  x )  =  ( C  .P.  B ) ) )  ->  A  <P  B )
505, 49rexlimddv 2507 . . 3  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( C  .P.  A )  <P  ( C  .P.  B ) )  /\  ( y  e.  P.  /\  ( C  .P.  y
)  =  1P ) )  ->  A  <P  B )
513, 50rexlimddv 2507 . 2  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( C  .P.  A
)  <P  ( C  .P.  B ) )  ->  A  <P  B )
5251ex 114 1  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  (
( C  .P.  A
)  <P  ( C  .P.  B )  ->  A  <P  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 927    = wceq 1296    e. wcel 1445   E.wrex 2371   class class class wbr 3867  (class class class)co 5690   P.cnp 6947   1Pc1p 6948    +P. cpp 6949    .P. cmp 6950    <P cltp 6951
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 582  ax-in2 583  ax-io 668  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-10 1448  ax-11 1449  ax-i12 1450  ax-bndl 1451  ax-4 1452  ax-13 1456  ax-14 1457  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480  ax-ext 2077  ax-coll 3975  ax-sep 3978  ax-nul 3986  ax-pow 4030  ax-pr 4060  ax-un 4284  ax-setind 4381  ax-iinf 4431
This theorem depends on definitions:  df-bi 116  df-dc 784  df-3or 928  df-3an 929  df-tru 1299  df-fal 1302  df-nf 1402  df-sb 1700  df-eu 1958  df-mo 1959  df-clab 2082  df-cleq 2088  df-clel 2091  df-nfc 2224  df-ne 2263  df-ral 2375  df-rex 2376  df-reu 2377  df-rab 2379  df-v 2635  df-sbc 2855  df-csb 2948  df-dif 3015  df-un 3017  df-in 3019  df-ss 3026  df-nul 3303  df-pw 3451  df-sn 3472  df-pr 3473  df-op 3475  df-uni 3676  df-int 3711  df-iun 3754  df-br 3868  df-opab 3922  df-mpt 3923  df-tr 3959  df-eprel 4140  df-id 4144  df-po 4147  df-iso 4148  df-iord 4217  df-on 4219  df-suc 4222  df-iom 4434  df-xp 4473  df-rel 4474  df-cnv 4475  df-co 4476  df-dm 4477  df-rn 4478  df-res 4479  df-ima 4480  df-iota 5014  df-fun 5051  df-fn 5052  df-f 5053  df-f1 5054  df-fo 5055  df-f1o 5056  df-fv 5057  df-ov 5693  df-oprab 5694  df-mpt2 5695  df-1st 5949  df-2nd 5950  df-recs 6108  df-irdg 6173  df-1o 6219  df-2o 6220  df-oadd 6223  df-omul 6224  df-er 6332  df-ec 6334  df-qs 6338  df-ni 6960  df-pli 6961  df-mi 6962  df-lti 6963  df-plpq 7000  df-mpq 7001  df-enq 7003  df-nqqs 7004  df-plqqs 7005  df-mqqs 7006  df-1nqqs 7007  df-rq 7008  df-ltnqqs 7009  df-enq0 7080  df-nq0 7081  df-0nq0 7082  df-plq0 7083  df-mq0 7084  df-inp 7122  df-i1p 7123  df-iplp 7124  df-imp 7125  df-iltp 7126
This theorem is referenced by:  mulextsr1lem  7422
  Copyright terms: Public domain W3C validator