| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ltmprr | Unicode version | ||
| Description: Ordering property of multiplication. (Contributed by Jim Kingdon, 18-Feb-2020.) |
| Ref | Expression |
|---|---|
| ltmprr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | recexpr 7825 |
. . . . 5
| |
| 2 | 1 | 3ad2ant3 1044 |
. . . 4
|
| 3 | 2 | adantr 276 |
. . 3
|
| 4 | ltexpri 7800 |
. . . . 5
| |
| 5 | 4 | ad2antlr 489 |
. . . 4
|
| 6 | simplll 533 |
. . . . . . 7
| |
| 7 | 6 | simp1d 1033 |
. . . . . 6
|
| 8 | simplrl 535 |
. . . . . . 7
| |
| 9 | simprl 529 |
. . . . . . 7
| |
| 10 | mulclpr 7759 |
. . . . . . 7
| |
| 11 | 8, 9, 10 | syl2anc 411 |
. . . . . 6
|
| 12 | ltaddpr 7784 |
. . . . . 6
| |
| 13 | 7, 11, 12 | syl2anc 411 |
. . . . 5
|
| 14 | simprr 531 |
. . . . . . 7
| |
| 15 | 14 | oveq2d 6017 |
. . . . . 6
|
| 16 | 6 | simp3d 1035 |
. . . . . . . . 9
|
| 17 | mulclpr 7759 |
. . . . . . . . 9
| |
| 18 | 16, 7, 17 | syl2anc 411 |
. . . . . . . 8
|
| 19 | distrprg 7775 |
. . . . . . . 8
| |
| 20 | 8, 18, 9, 19 | syl3anc 1271 |
. . . . . . 7
|
| 21 | mulassprg 7768 |
. . . . . . . . 9
| |
| 22 | 8, 16, 7, 21 | syl3anc 1271 |
. . . . . . . 8
|
| 23 | 22 | oveq1d 6016 |
. . . . . . 7
|
| 24 | mulcomprg 7767 |
. . . . . . . . . . . 12
| |
| 25 | 8, 16, 24 | syl2anc 411 |
. . . . . . . . . . 11
|
| 26 | simplrr 536 |
. . . . . . . . . . 11
| |
| 27 | 25, 26 | eqtrd 2262 |
. . . . . . . . . 10
|
| 28 | 27 | oveq1d 6016 |
. . . . . . . . 9
|
| 29 | 1pr 7741 |
. . . . . . . . . . . 12
| |
| 30 | mulcomprg 7767 |
. . . . . . . . . . . 12
| |
| 31 | 29, 30 | mpan2 425 |
. . . . . . . . . . 11
|
| 32 | 1idpr 7779 |
. . . . . . . . . . 11
| |
| 33 | 31, 32 | eqtr3d 2264 |
. . . . . . . . . 10
|
| 34 | 7, 33 | syl 14 |
. . . . . . . . 9
|
| 35 | 28, 34 | eqtrd 2262 |
. . . . . . . 8
|
| 36 | 35 | oveq1d 6016 |
. . . . . . 7
|
| 37 | 20, 23, 36 | 3eqtr2d 2268 |
. . . . . 6
|
| 38 | 27 | oveq1d 6016 |
. . . . . . 7
|
| 39 | 6 | simp2d 1034 |
. . . . . . . 8
|
| 40 | mulassprg 7768 |
. . . . . . . 8
| |
| 41 | 8, 16, 39, 40 | syl3anc 1271 |
. . . . . . 7
|
| 42 | mulcomprg 7767 |
. . . . . . . . . 10
| |
| 43 | 29, 42 | mpan2 425 |
. . . . . . . . 9
|
| 44 | 1idpr 7779 |
. . . . . . . . 9
| |
| 45 | 43, 44 | eqtr3d 2264 |
. . . . . . . 8
|
| 46 | 39, 45 | syl 14 |
. . . . . . 7
|
| 47 | 38, 41, 46 | 3eqtr3d 2270 |
. . . . . 6
|
| 48 | 15, 37, 47 | 3eqtr3d 2270 |
. . . . 5
|
| 49 | 13, 48 | breqtrd 4109 |
. . . 4
|
| 50 | 5, 49 | rexlimddv 2653 |
. . 3
|
| 51 | 3, 50 | rexlimddv 2653 |
. 2
|
| 52 | 51 | ex 115 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-eprel 4380 df-id 4384 df-po 4387 df-iso 4388 df-iord 4457 df-on 4459 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-ov 6004 df-oprab 6005 df-mpo 6006 df-1st 6286 df-2nd 6287 df-recs 6451 df-irdg 6516 df-1o 6562 df-2o 6563 df-oadd 6566 df-omul 6567 df-er 6680 df-ec 6682 df-qs 6686 df-ni 7491 df-pli 7492 df-mi 7493 df-lti 7494 df-plpq 7531 df-mpq 7532 df-enq 7534 df-nqqs 7535 df-plqqs 7536 df-mqqs 7537 df-1nqqs 7538 df-rq 7539 df-ltnqqs 7540 df-enq0 7611 df-nq0 7612 df-0nq0 7613 df-plq0 7614 df-mq0 7615 df-inp 7653 df-i1p 7654 df-iplp 7655 df-imp 7656 df-iltp 7657 |
| This theorem is referenced by: mulextsr1lem 7967 |
| Copyright terms: Public domain | W3C validator |