Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ltmprr | Unicode version |
Description: Ordering property of multiplication. (Contributed by Jim Kingdon, 18-Feb-2020.) |
Ref | Expression |
---|---|
ltmprr |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | recexpr 7558 | . . . . 5 | |
2 | 1 | 3ad2ant3 1005 | . . . 4 |
3 | 2 | adantr 274 | . . 3 |
4 | ltexpri 7533 | . . . . 5 | |
5 | 4 | ad2antlr 481 | . . . 4 |
6 | simplll 523 | . . . . . . 7 | |
7 | 6 | simp1d 994 | . . . . . 6 |
8 | simplrl 525 | . . . . . . 7 | |
9 | simprl 521 | . . . . . . 7 | |
10 | mulclpr 7492 | . . . . . . 7 | |
11 | 8, 9, 10 | syl2anc 409 | . . . . . 6 |
12 | ltaddpr 7517 | . . . . . 6 | |
13 | 7, 11, 12 | syl2anc 409 | . . . . 5 |
14 | simprr 522 | . . . . . . 7 | |
15 | 14 | oveq2d 5840 | . . . . . 6 |
16 | 6 | simp3d 996 | . . . . . . . . 9 |
17 | mulclpr 7492 | . . . . . . . . 9 | |
18 | 16, 7, 17 | syl2anc 409 | . . . . . . . 8 |
19 | distrprg 7508 | . . . . . . . 8 | |
20 | 8, 18, 9, 19 | syl3anc 1220 | . . . . . . 7 |
21 | mulassprg 7501 | . . . . . . . . 9 | |
22 | 8, 16, 7, 21 | syl3anc 1220 | . . . . . . . 8 |
23 | 22 | oveq1d 5839 | . . . . . . 7 |
24 | mulcomprg 7500 | . . . . . . . . . . . 12 | |
25 | 8, 16, 24 | syl2anc 409 | . . . . . . . . . . 11 |
26 | simplrr 526 | . . . . . . . . . . 11 | |
27 | 25, 26 | eqtrd 2190 | . . . . . . . . . 10 |
28 | 27 | oveq1d 5839 | . . . . . . . . 9 |
29 | 1pr 7474 | . . . . . . . . . . . 12 | |
30 | mulcomprg 7500 | . . . . . . . . . . . 12 | |
31 | 29, 30 | mpan2 422 | . . . . . . . . . . 11 |
32 | 1idpr 7512 | . . . . . . . . . . 11 | |
33 | 31, 32 | eqtr3d 2192 | . . . . . . . . . 10 |
34 | 7, 33 | syl 14 | . . . . . . . . 9 |
35 | 28, 34 | eqtrd 2190 | . . . . . . . 8 |
36 | 35 | oveq1d 5839 | . . . . . . 7 |
37 | 20, 23, 36 | 3eqtr2d 2196 | . . . . . 6 |
38 | 27 | oveq1d 5839 | . . . . . . 7 |
39 | 6 | simp2d 995 | . . . . . . . 8 |
40 | mulassprg 7501 | . . . . . . . 8 | |
41 | 8, 16, 39, 40 | syl3anc 1220 | . . . . . . 7 |
42 | mulcomprg 7500 | . . . . . . . . . 10 | |
43 | 29, 42 | mpan2 422 | . . . . . . . . 9 |
44 | 1idpr 7512 | . . . . . . . . 9 | |
45 | 43, 44 | eqtr3d 2192 | . . . . . . . 8 |
46 | 39, 45 | syl 14 | . . . . . . 7 |
47 | 38, 41, 46 | 3eqtr3d 2198 | . . . . . 6 |
48 | 15, 37, 47 | 3eqtr3d 2198 | . . . . 5 |
49 | 13, 48 | breqtrd 3990 | . . . 4 |
50 | 5, 49 | rexlimddv 2579 | . . 3 |
51 | 3, 50 | rexlimddv 2579 | . 2 |
52 | 51 | ex 114 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 w3a 963 wceq 1335 wcel 2128 wrex 2436 class class class wbr 3965 (class class class)co 5824 cnp 7211 c1p 7212 cpp 7213 cmp 7214 cltp 7215 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-coll 4079 ax-sep 4082 ax-nul 4090 ax-pow 4135 ax-pr 4169 ax-un 4393 ax-setind 4496 ax-iinf 4547 |
This theorem depends on definitions: df-bi 116 df-dc 821 df-3or 964 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-ral 2440 df-rex 2441 df-reu 2442 df-rab 2444 df-v 2714 df-sbc 2938 df-csb 3032 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-nul 3395 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-int 3808 df-iun 3851 df-br 3966 df-opab 4026 df-mpt 4027 df-tr 4063 df-eprel 4249 df-id 4253 df-po 4256 df-iso 4257 df-iord 4326 df-on 4328 df-suc 4331 df-iom 4550 df-xp 4592 df-rel 4593 df-cnv 4594 df-co 4595 df-dm 4596 df-rn 4597 df-res 4598 df-ima 4599 df-iota 5135 df-fun 5172 df-fn 5173 df-f 5174 df-f1 5175 df-fo 5176 df-f1o 5177 df-fv 5178 df-ov 5827 df-oprab 5828 df-mpo 5829 df-1st 6088 df-2nd 6089 df-recs 6252 df-irdg 6317 df-1o 6363 df-2o 6364 df-oadd 6367 df-omul 6368 df-er 6480 df-ec 6482 df-qs 6486 df-ni 7224 df-pli 7225 df-mi 7226 df-lti 7227 df-plpq 7264 df-mpq 7265 df-enq 7267 df-nqqs 7268 df-plqqs 7269 df-mqqs 7270 df-1nqqs 7271 df-rq 7272 df-ltnqqs 7273 df-enq0 7344 df-nq0 7345 df-0nq0 7346 df-plq0 7347 df-mq0 7348 df-inp 7386 df-i1p 7387 df-iplp 7388 df-imp 7389 df-iltp 7390 |
This theorem is referenced by: mulextsr1lem 7700 |
Copyright terms: Public domain | W3C validator |