| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > archrecnq | GIF version | ||
| Description: Archimedean principle for fractions (reciprocal version). (Contributed by Jim Kingdon, 27-Sep-2020.) |
| Ref | Expression |
|---|---|
| archrecnq | ⊢ (𝐴 ∈ Q → ∃𝑗 ∈ N (*Q‘[〈𝑗, 1o〉] ~Q ) <Q 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | recclnq 7518 | . . 3 ⊢ (𝐴 ∈ Q → (*Q‘𝐴) ∈ Q) | |
| 2 | archnqq 7543 | . . 3 ⊢ ((*Q‘𝐴) ∈ Q → ∃𝑗 ∈ N (*Q‘𝐴) <Q [〈𝑗, 1o〉] ~Q ) | |
| 3 | 1, 2 | syl 14 | . 2 ⊢ (𝐴 ∈ Q → ∃𝑗 ∈ N (*Q‘𝐴) <Q [〈𝑗, 1o〉] ~Q ) |
| 4 | nnnq 7548 | . . . . 5 ⊢ (𝑗 ∈ N → [〈𝑗, 1o〉] ~Q ∈ Q) | |
| 5 | ltrnqg 7546 | . . . . 5 ⊢ (((*Q‘𝐴) ∈ Q ∧ [〈𝑗, 1o〉] ~Q ∈ Q) → ((*Q‘𝐴) <Q [〈𝑗, 1o〉] ~Q ↔ (*Q‘[〈𝑗, 1o〉] ~Q ) <Q (*Q‘(*Q‘𝐴)))) | |
| 6 | 1, 4, 5 | syl2an 289 | . . . 4 ⊢ ((𝐴 ∈ Q ∧ 𝑗 ∈ N) → ((*Q‘𝐴) <Q [〈𝑗, 1o〉] ~Q ↔ (*Q‘[〈𝑗, 1o〉] ~Q ) <Q (*Q‘(*Q‘𝐴)))) |
| 7 | recrecnq 7520 | . . . . . 6 ⊢ (𝐴 ∈ Q → (*Q‘(*Q‘𝐴)) = 𝐴) | |
| 8 | 7 | breq2d 4060 | . . . . 5 ⊢ (𝐴 ∈ Q → ((*Q‘[〈𝑗, 1o〉] ~Q ) <Q (*Q‘(*Q‘𝐴)) ↔ (*Q‘[〈𝑗, 1o〉] ~Q ) <Q 𝐴)) |
| 9 | 8 | adantr 276 | . . . 4 ⊢ ((𝐴 ∈ Q ∧ 𝑗 ∈ N) → ((*Q‘[〈𝑗, 1o〉] ~Q ) <Q (*Q‘(*Q‘𝐴)) ↔ (*Q‘[〈𝑗, 1o〉] ~Q ) <Q 𝐴)) |
| 10 | 6, 9 | bitrd 188 | . . 3 ⊢ ((𝐴 ∈ Q ∧ 𝑗 ∈ N) → ((*Q‘𝐴) <Q [〈𝑗, 1o〉] ~Q ↔ (*Q‘[〈𝑗, 1o〉] ~Q ) <Q 𝐴)) |
| 11 | 10 | rexbidva 2504 | . 2 ⊢ (𝐴 ∈ Q → (∃𝑗 ∈ N (*Q‘𝐴) <Q [〈𝑗, 1o〉] ~Q ↔ ∃𝑗 ∈ N (*Q‘[〈𝑗, 1o〉] ~Q ) <Q 𝐴)) |
| 12 | 3, 11 | mpbid 147 | 1 ⊢ (𝐴 ∈ Q → ∃𝑗 ∈ N (*Q‘[〈𝑗, 1o〉] ~Q ) <Q 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∈ wcel 2177 ∃wrex 2486 〈cop 3638 class class class wbr 4048 ‘cfv 5277 1oc1o 6505 [cec 6628 Ncnpi 7398 ~Q ceq 7405 Qcnq 7406 *Qcrq 7410 <Q cltq 7411 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4164 ax-sep 4167 ax-nul 4175 ax-pow 4223 ax-pr 4258 ax-un 4485 ax-setind 4590 ax-iinf 4641 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3001 df-csb 3096 df-dif 3170 df-un 3172 df-in 3174 df-ss 3181 df-nul 3463 df-pw 3620 df-sn 3641 df-pr 3642 df-op 3644 df-uni 3854 df-int 3889 df-iun 3932 df-br 4049 df-opab 4111 df-mpt 4112 df-tr 4148 df-eprel 4341 df-id 4345 df-iord 4418 df-on 4420 df-suc 4423 df-iom 4644 df-xp 4686 df-rel 4687 df-cnv 4688 df-co 4689 df-dm 4690 df-rn 4691 df-res 4692 df-ima 4693 df-iota 5238 df-fun 5279 df-fn 5280 df-f 5281 df-f1 5282 df-fo 5283 df-f1o 5284 df-fv 5285 df-ov 5957 df-oprab 5958 df-mpo 5959 df-1st 6236 df-2nd 6237 df-recs 6401 df-irdg 6466 df-1o 6512 df-oadd 6516 df-omul 6517 df-er 6630 df-ec 6632 df-qs 6636 df-ni 7430 df-pli 7431 df-mi 7432 df-lti 7433 df-mpq 7471 df-enq 7473 df-nqqs 7474 df-mqqs 7476 df-1nqqs 7477 df-rq 7478 df-ltnqqs 7479 |
| This theorem is referenced by: archrecpr 7790 caucvgprlemm 7794 caucvgprlemloc 7801 caucvgprlemlim 7807 caucvgprprlemml 7820 caucvgprprlemloc 7829 |
| Copyright terms: Public domain | W3C validator |