![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > archrecnq | GIF version |
Description: Archimedean principle for fractions (reciprocal version). (Contributed by Jim Kingdon, 27-Sep-2020.) |
Ref | Expression |
---|---|
archrecnq | ⊢ (𝐴 ∈ Q → ∃𝑗 ∈ N (*Q‘[〈𝑗, 1o〉] ~Q ) <Q 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | recclnq 7014 | . . 3 ⊢ (𝐴 ∈ Q → (*Q‘𝐴) ∈ Q) | |
2 | archnqq 7039 | . . 3 ⊢ ((*Q‘𝐴) ∈ Q → ∃𝑗 ∈ N (*Q‘𝐴) <Q [〈𝑗, 1o〉] ~Q ) | |
3 | 1, 2 | syl 14 | . 2 ⊢ (𝐴 ∈ Q → ∃𝑗 ∈ N (*Q‘𝐴) <Q [〈𝑗, 1o〉] ~Q ) |
4 | nnnq 7044 | . . . . 5 ⊢ (𝑗 ∈ N → [〈𝑗, 1o〉] ~Q ∈ Q) | |
5 | ltrnqg 7042 | . . . . 5 ⊢ (((*Q‘𝐴) ∈ Q ∧ [〈𝑗, 1o〉] ~Q ∈ Q) → ((*Q‘𝐴) <Q [〈𝑗, 1o〉] ~Q ↔ (*Q‘[〈𝑗, 1o〉] ~Q ) <Q (*Q‘(*Q‘𝐴)))) | |
6 | 1, 4, 5 | syl2an 284 | . . . 4 ⊢ ((𝐴 ∈ Q ∧ 𝑗 ∈ N) → ((*Q‘𝐴) <Q [〈𝑗, 1o〉] ~Q ↔ (*Q‘[〈𝑗, 1o〉] ~Q ) <Q (*Q‘(*Q‘𝐴)))) |
7 | recrecnq 7016 | . . . . . 6 ⊢ (𝐴 ∈ Q → (*Q‘(*Q‘𝐴)) = 𝐴) | |
8 | 7 | breq2d 3865 | . . . . 5 ⊢ (𝐴 ∈ Q → ((*Q‘[〈𝑗, 1o〉] ~Q ) <Q (*Q‘(*Q‘𝐴)) ↔ (*Q‘[〈𝑗, 1o〉] ~Q ) <Q 𝐴)) |
9 | 8 | adantr 271 | . . . 4 ⊢ ((𝐴 ∈ Q ∧ 𝑗 ∈ N) → ((*Q‘[〈𝑗, 1o〉] ~Q ) <Q (*Q‘(*Q‘𝐴)) ↔ (*Q‘[〈𝑗, 1o〉] ~Q ) <Q 𝐴)) |
10 | 6, 9 | bitrd 187 | . . 3 ⊢ ((𝐴 ∈ Q ∧ 𝑗 ∈ N) → ((*Q‘𝐴) <Q [〈𝑗, 1o〉] ~Q ↔ (*Q‘[〈𝑗, 1o〉] ~Q ) <Q 𝐴)) |
11 | 10 | rexbidva 2378 | . 2 ⊢ (𝐴 ∈ Q → (∃𝑗 ∈ N (*Q‘𝐴) <Q [〈𝑗, 1o〉] ~Q ↔ ∃𝑗 ∈ N (*Q‘[〈𝑗, 1o〉] ~Q ) <Q 𝐴)) |
12 | 3, 11 | mpbid 146 | 1 ⊢ (𝐴 ∈ Q → ∃𝑗 ∈ N (*Q‘[〈𝑗, 1o〉] ~Q ) <Q 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∈ wcel 1439 ∃wrex 2361 〈cop 3455 class class class wbr 3853 ‘cfv 5030 1oc1o 6190 [cec 6306 Ncnpi 6894 ~Q ceq 6901 Qcnq 6902 *Qcrq 6906 <Q cltq 6907 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 580 ax-in2 581 ax-io 666 ax-5 1382 ax-7 1383 ax-gen 1384 ax-ie1 1428 ax-ie2 1429 ax-8 1441 ax-10 1442 ax-11 1443 ax-i12 1444 ax-bndl 1445 ax-4 1446 ax-13 1450 ax-14 1451 ax-17 1465 ax-i9 1469 ax-ial 1473 ax-i5r 1474 ax-ext 2071 ax-coll 3962 ax-sep 3965 ax-nul 3973 ax-pow 4017 ax-pr 4047 ax-un 4271 ax-setind 4368 ax-iinf 4418 |
This theorem depends on definitions: df-bi 116 df-dc 782 df-3or 926 df-3an 927 df-tru 1293 df-fal 1296 df-nf 1396 df-sb 1694 df-eu 1952 df-mo 1953 df-clab 2076 df-cleq 2082 df-clel 2085 df-nfc 2218 df-ne 2257 df-ral 2365 df-rex 2366 df-reu 2367 df-rab 2369 df-v 2624 df-sbc 2844 df-csb 2937 df-dif 3004 df-un 3006 df-in 3008 df-ss 3015 df-nul 3290 df-pw 3437 df-sn 3458 df-pr 3459 df-op 3461 df-uni 3662 df-int 3697 df-iun 3740 df-br 3854 df-opab 3908 df-mpt 3909 df-tr 3945 df-eprel 4127 df-id 4131 df-iord 4204 df-on 4206 df-suc 4209 df-iom 4421 df-xp 4460 df-rel 4461 df-cnv 4462 df-co 4463 df-dm 4464 df-rn 4465 df-res 4466 df-ima 4467 df-iota 4995 df-fun 5032 df-fn 5033 df-f 5034 df-f1 5035 df-fo 5036 df-f1o 5037 df-fv 5038 df-ov 5671 df-oprab 5672 df-mpt2 5673 df-1st 5927 df-2nd 5928 df-recs 6086 df-irdg 6151 df-1o 6197 df-oadd 6201 df-omul 6202 df-er 6308 df-ec 6310 df-qs 6314 df-ni 6926 df-pli 6927 df-mi 6928 df-lti 6929 df-mpq 6967 df-enq 6969 df-nqqs 6970 df-mqqs 6972 df-1nqqs 6973 df-rq 6974 df-ltnqqs 6975 |
This theorem is referenced by: archrecpr 7286 caucvgprlemm 7290 caucvgprlemloc 7297 caucvgprlemlim 7303 caucvgprprlemml 7316 caucvgprprlemloc 7325 |
Copyright terms: Public domain | W3C validator |