ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  archrecpr Unicode version

Theorem archrecpr 7605
Description: Archimedean principle for positive reals (reciprocal version). (Contributed by Jim Kingdon, 25-Nov-2020.)
Assertion
Ref Expression
archrecpr  |-  ( A  e.  P.  ->  E. j  e.  N.  <. { l  |  l  <Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q  u } >.  <P  A )
Distinct variable groups:    A, j    j,
l, u
Allowed substitution hints:    A( u, l)

Proof of Theorem archrecpr
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 prop 7416 . . . 4  |-  ( A  e.  P.  ->  <. ( 1st `  A ) ,  ( 2nd `  A
) >.  e.  P. )
2 prml 7418 . . . 4  |-  ( <.
( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  ->  E. x  e.  Q.  x  e.  ( 1st `  A ) )
31, 2syl 14 . . 3  |-  ( A  e.  P.  ->  E. x  e.  Q.  x  e.  ( 1st `  A ) )
4 archrecnq 7604 . . . . 5  |-  ( x  e.  Q.  ->  E. j  e.  N.  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q  x )
54ad2antrl 482 . . . 4  |-  ( ( A  e.  P.  /\  ( x  e.  Q.  /\  x  e.  ( 1st `  A ) ) )  ->  E. j  e.  N.  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q  x )
61ad2antrr 480 . . . . . 6  |-  ( ( ( A  e.  P.  /\  ( x  e.  Q.  /\  x  e.  ( 1st `  A ) ) )  /\  j  e.  N. )  ->  <. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P. )
7 simplrr 526 . . . . . 6  |-  ( ( ( A  e.  P.  /\  ( x  e.  Q.  /\  x  e.  ( 1st `  A ) ) )  /\  j  e.  N. )  ->  x  e.  ( 1st `  A ) )
8 prcdnql 7425 . . . . . 6  |-  ( (
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  /\  x  e.  ( 1st `  A ) )  -> 
( ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q  x  ->  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  e.  ( 1st `  A
) ) )
96, 7, 8syl2anc 409 . . . . 5  |-  ( ( ( A  e.  P.  /\  ( x  e.  Q.  /\  x  e.  ( 1st `  A ) ) )  /\  j  e.  N. )  ->  ( ( *Q
`  [ <. j ,  1o >. ]  ~Q  )  <Q  x  ->  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  e.  ( 1st `  A
) ) )
109reximdva 2568 . . . 4  |-  ( ( A  e.  P.  /\  ( x  e.  Q.  /\  x  e.  ( 1st `  A ) ) )  ->  ( E. j  e.  N.  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q  x  ->  E. j  e.  N.  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  e.  ( 1st `  A ) ) )
115, 10mpd 13 . . 3  |-  ( ( A  e.  P.  /\  ( x  e.  Q.  /\  x  e.  ( 1st `  A ) ) )  ->  E. j  e.  N.  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  e.  ( 1st `  A ) )
123, 11rexlimddv 2588 . 2  |-  ( A  e.  P.  ->  E. j  e.  N.  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  e.  ( 1st `  A
) )
13 nnnq 7363 . . . . . 6  |-  ( j  e.  N.  ->  [ <. j ,  1o >. ]  ~Q  e.  Q. )
14 recclnq 7333 . . . . . 6  |-  ( [
<. j ,  1o >. ]  ~Q  e.  Q.  ->  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  e.  Q. )
1513, 14syl 14 . . . . 5  |-  ( j  e.  N.  ->  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  e.  Q. )
1615adantl 275 . . . 4  |-  ( ( A  e.  P.  /\  j  e.  N. )  ->  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  e.  Q. )
17 simpl 108 . . . 4  |-  ( ( A  e.  P.  /\  j  e.  N. )  ->  A  e.  P. )
18 nqprl 7492 . . . 4  |-  ( ( ( *Q `  [ <. j ,  1o >. ]  ~Q  )  e.  Q.  /\  A  e.  P. )  ->  ( ( *Q `  [ <. j ,  1o >. ]  ~Q  )  e.  ( 1st `  A
)  <->  <. { l  |  l  <Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q  u } >.  <P  A ) )
1916, 17, 18syl2anc 409 . . 3  |-  ( ( A  e.  P.  /\  j  e.  N. )  ->  ( ( *Q `  [ <. j ,  1o >. ]  ~Q  )  e.  ( 1st `  A
)  <->  <. { l  |  l  <Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q  u } >.  <P  A ) )
2019rexbidva 2463 . 2  |-  ( A  e.  P.  ->  ( E. j  e.  N.  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  e.  ( 1st `  A )  <->  E. j  e.  N.  <. { l  |  l  <Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q  u } >.  <P  A ) )
2112, 20mpbid 146 1  |-  ( A  e.  P.  ->  E. j  e.  N.  <. { l  |  l  <Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q  u } >.  <P  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    e. wcel 2136   {cab 2151   E.wrex 2445   <.cop 3579   class class class wbr 3982   ` cfv 5188   1stc1st 6106   2ndc2nd 6107   1oc1o 6377   [cec 6499   N.cnpi 7213    ~Q ceq 7220   Q.cnq 7221   *Qcrq 7225    <Q cltq 7226   P.cnp 7232    <P cltp 7236
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-eprel 4267  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-irdg 6338  df-1o 6384  df-oadd 6388  df-omul 6389  df-er 6501  df-ec 6503  df-qs 6507  df-ni 7245  df-pli 7246  df-mi 7247  df-lti 7248  df-plpq 7285  df-mpq 7286  df-enq 7288  df-nqqs 7289  df-plqqs 7290  df-mqqs 7291  df-1nqqs 7292  df-rq 7293  df-ltnqqs 7294  df-inp 7407  df-iltp 7411
This theorem is referenced by:  caucvgprprlemlim  7652
  Copyright terms: Public domain W3C validator