ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  archrecpr Unicode version

Theorem archrecpr 7626
Description: Archimedean principle for positive reals (reciprocal version). (Contributed by Jim Kingdon, 25-Nov-2020.)
Assertion
Ref Expression
archrecpr  |-  ( A  e.  P.  ->  E. j  e.  N.  <. { l  |  l  <Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q  u } >.  <P  A )
Distinct variable groups:    A, j    j,
l, u
Allowed substitution hints:    A( u, l)

Proof of Theorem archrecpr
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 prop 7437 . . . 4  |-  ( A  e.  P.  ->  <. ( 1st `  A ) ,  ( 2nd `  A
) >.  e.  P. )
2 prml 7439 . . . 4  |-  ( <.
( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  ->  E. x  e.  Q.  x  e.  ( 1st `  A ) )
31, 2syl 14 . . 3  |-  ( A  e.  P.  ->  E. x  e.  Q.  x  e.  ( 1st `  A ) )
4 archrecnq 7625 . . . . 5  |-  ( x  e.  Q.  ->  E. j  e.  N.  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q  x )
54ad2antrl 487 . . . 4  |-  ( ( A  e.  P.  /\  ( x  e.  Q.  /\  x  e.  ( 1st `  A ) ) )  ->  E. j  e.  N.  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q  x )
61ad2antrr 485 . . . . . 6  |-  ( ( ( A  e.  P.  /\  ( x  e.  Q.  /\  x  e.  ( 1st `  A ) ) )  /\  j  e.  N. )  ->  <. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P. )
7 simplrr 531 . . . . . 6  |-  ( ( ( A  e.  P.  /\  ( x  e.  Q.  /\  x  e.  ( 1st `  A ) ) )  /\  j  e.  N. )  ->  x  e.  ( 1st `  A ) )
8 prcdnql 7446 . . . . . 6  |-  ( (
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  /\  x  e.  ( 1st `  A ) )  -> 
( ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q  x  ->  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  e.  ( 1st `  A
) ) )
96, 7, 8syl2anc 409 . . . . 5  |-  ( ( ( A  e.  P.  /\  ( x  e.  Q.  /\  x  e.  ( 1st `  A ) ) )  /\  j  e.  N. )  ->  ( ( *Q
`  [ <. j ,  1o >. ]  ~Q  )  <Q  x  ->  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  e.  ( 1st `  A
) ) )
109reximdva 2572 . . . 4  |-  ( ( A  e.  P.  /\  ( x  e.  Q.  /\  x  e.  ( 1st `  A ) ) )  ->  ( E. j  e.  N.  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q  x  ->  E. j  e.  N.  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  e.  ( 1st `  A ) ) )
115, 10mpd 13 . . 3  |-  ( ( A  e.  P.  /\  ( x  e.  Q.  /\  x  e.  ( 1st `  A ) ) )  ->  E. j  e.  N.  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  e.  ( 1st `  A ) )
123, 11rexlimddv 2592 . 2  |-  ( A  e.  P.  ->  E. j  e.  N.  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  e.  ( 1st `  A
) )
13 nnnq 7384 . . . . . 6  |-  ( j  e.  N.  ->  [ <. j ,  1o >. ]  ~Q  e.  Q. )
14 recclnq 7354 . . . . . 6  |-  ( [
<. j ,  1o >. ]  ~Q  e.  Q.  ->  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  e.  Q. )
1513, 14syl 14 . . . . 5  |-  ( j  e.  N.  ->  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  e.  Q. )
1615adantl 275 . . . 4  |-  ( ( A  e.  P.  /\  j  e.  N. )  ->  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  e.  Q. )
17 simpl 108 . . . 4  |-  ( ( A  e.  P.  /\  j  e.  N. )  ->  A  e.  P. )
18 nqprl 7513 . . . 4  |-  ( ( ( *Q `  [ <. j ,  1o >. ]  ~Q  )  e.  Q.  /\  A  e.  P. )  ->  ( ( *Q `  [ <. j ,  1o >. ]  ~Q  )  e.  ( 1st `  A
)  <->  <. { l  |  l  <Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q  u } >.  <P  A ) )
1916, 17, 18syl2anc 409 . . 3  |-  ( ( A  e.  P.  /\  j  e.  N. )  ->  ( ( *Q `  [ <. j ,  1o >. ]  ~Q  )  e.  ( 1st `  A
)  <->  <. { l  |  l  <Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q  u } >.  <P  A ) )
2019rexbidva 2467 . 2  |-  ( A  e.  P.  ->  ( E. j  e.  N.  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  e.  ( 1st `  A )  <->  E. j  e.  N.  <. { l  |  l  <Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q  u } >.  <P  A ) )
2112, 20mpbid 146 1  |-  ( A  e.  P.  ->  E. j  e.  N.  <. { l  |  l  <Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q  u } >.  <P  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    e. wcel 2141   {cab 2156   E.wrex 2449   <.cop 3586   class class class wbr 3989   ` cfv 5198   1stc1st 6117   2ndc2nd 6118   1oc1o 6388   [cec 6511   N.cnpi 7234    ~Q ceq 7241   Q.cnq 7242   *Qcrq 7246    <Q cltq 7247   P.cnp 7253    <P cltp 7257
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-eprel 4274  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-irdg 6349  df-1o 6395  df-oadd 6399  df-omul 6400  df-er 6513  df-ec 6515  df-qs 6519  df-ni 7266  df-pli 7267  df-mi 7268  df-lti 7269  df-plpq 7306  df-mpq 7307  df-enq 7309  df-nqqs 7310  df-plqqs 7311  df-mqqs 7312  df-1nqqs 7313  df-rq 7314  df-ltnqqs 7315  df-inp 7428  df-iltp 7432
This theorem is referenced by:  caucvgprprlemlim  7673
  Copyright terms: Public domain W3C validator