ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  btwnapz Unicode version

Theorem btwnapz 9385
Description: A number between an integer and its successor is apart from any integer. (Contributed by Jim Kingdon, 6-Jan-2023.)
Hypotheses
Ref Expression
btwnapz.a  |-  ( ph  ->  A  e.  ZZ )
btwnapz.b  |-  ( ph  ->  B  e.  RR )
btwnapz.c  |-  ( ph  ->  C  e.  ZZ )
btwnapz.ab  |-  ( ph  ->  A  <  B )
btwnapz.ba  |-  ( ph  ->  B  <  ( A  +  1 ) )
Assertion
Ref Expression
btwnapz  |-  ( ph  ->  B #  C )

Proof of Theorem btwnapz
StepHypRef Expression
1 btwnapz.c . . . . 5  |-  ( ph  ->  C  e.  ZZ )
21zred 9377 . . . 4  |-  ( ph  ->  C  e.  RR )
32adantr 276 . . 3  |-  ( (
ph  /\  C  <_  A )  ->  C  e.  RR )
4 btwnapz.b . . . 4  |-  ( ph  ->  B  e.  RR )
54adantr 276 . . 3  |-  ( (
ph  /\  C  <_  A )  ->  B  e.  RR )
6 btwnapz.a . . . . . 6  |-  ( ph  ->  A  e.  ZZ )
76zred 9377 . . . . 5  |-  ( ph  ->  A  e.  RR )
87adantr 276 . . . 4  |-  ( (
ph  /\  C  <_  A )  ->  A  e.  RR )
9 simpr 110 . . . 4  |-  ( (
ph  /\  C  <_  A )  ->  C  <_  A )
10 btwnapz.ab . . . . 5  |-  ( ph  ->  A  <  B )
1110adantr 276 . . . 4  |-  ( (
ph  /\  C  <_  A )  ->  A  <  B )
123, 8, 5, 9, 11lelttrd 8084 . . 3  |-  ( (
ph  /\  C  <_  A )  ->  C  <  B )
133, 5, 12gtapd 8596 . 2  |-  ( (
ph  /\  C  <_  A )  ->  B #  C
)
144adantr 276 . . 3  |-  ( (
ph  /\  A  <  C )  ->  B  e.  RR )
152adantr 276 . . 3  |-  ( (
ph  /\  A  <  C )  ->  C  e.  RR )
16 peano2re 8095 . . . . . 6  |-  ( A  e.  RR  ->  ( A  +  1 )  e.  RR )
177, 16syl 14 . . . . 5  |-  ( ph  ->  ( A  +  1 )  e.  RR )
1817adantr 276 . . . 4  |-  ( (
ph  /\  A  <  C )  ->  ( A  +  1 )  e.  RR )
19 btwnapz.ba . . . . 5  |-  ( ph  ->  B  <  ( A  +  1 ) )
2019adantr 276 . . . 4  |-  ( (
ph  /\  A  <  C )  ->  B  <  ( A  +  1 ) )
21 zltp1le 9309 . . . . . 6  |-  ( ( A  e.  ZZ  /\  C  e.  ZZ )  ->  ( A  <  C  <->  ( A  +  1 )  <_  C ) )
226, 1, 21syl2anc 411 . . . . 5  |-  ( ph  ->  ( A  <  C  <->  ( A  +  1 )  <_  C ) )
2322biimpa 296 . . . 4  |-  ( (
ph  /\  A  <  C )  ->  ( A  +  1 )  <_  C )
2414, 18, 15, 20, 23ltletrd 8382 . . 3  |-  ( (
ph  /\  A  <  C )  ->  B  <  C )
2514, 15, 24ltapd 8597 . 2  |-  ( (
ph  /\  A  <  C )  ->  B #  C
)
26 zlelttric 9300 . . 3  |-  ( ( C  e.  ZZ  /\  A  e.  ZZ )  ->  ( C  <_  A  \/  A  <  C ) )
271, 6, 26syl2anc 411 . 2  |-  ( ph  ->  ( C  <_  A  \/  A  <  C ) )
2813, 25, 27mpjaodan 798 1  |-  ( ph  ->  B #  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 708    e. wcel 2148   class class class wbr 4005  (class class class)co 5877   RRcr 7812   1c1 7814    + caddc 7816    < clt 7994    <_ cle 7995   # cap 8540   ZZcz 9255
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-mulrcl 7912  ax-addcom 7913  ax-mulcom 7914  ax-addass 7915  ax-mulass 7916  ax-distr 7917  ax-i2m1 7918  ax-0lt1 7919  ax-1rid 7920  ax-0id 7921  ax-rnegex 7922  ax-precex 7923  ax-cnre 7924  ax-pre-ltirr 7925  ax-pre-ltwlin 7926  ax-pre-lttrn 7927  ax-pre-apti 7928  ax-pre-ltadd 7929  ax-pre-mulgt0 7930
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-br 4006  df-opab 4067  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-iota 5180  df-fun 5220  df-fv 5226  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999  df-le 8000  df-sub 8132  df-neg 8133  df-reap 8534  df-ap 8541  df-inn 8922  df-n0 9179  df-z 9256
This theorem is referenced by:  eirraplem  11786
  Copyright terms: Public domain W3C validator