Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > btwnapz | Unicode version |
Description: A number between an integer and its successor is apart from any integer. (Contributed by Jim Kingdon, 6-Jan-2023.) |
Ref | Expression |
---|---|
btwnapz.a | |
btwnapz.b | |
btwnapz.c | |
btwnapz.ab | |
btwnapz.ba |
Ref | Expression |
---|---|
btwnapz | # |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | btwnapz.c | . . . . 5 | |
2 | 1 | zred 9346 | . . . 4 |
3 | 2 | adantr 276 | . . 3 |
4 | btwnapz.b | . . . 4 | |
5 | 4 | adantr 276 | . . 3 |
6 | btwnapz.a | . . . . . 6 | |
7 | 6 | zred 9346 | . . . . 5 |
8 | 7 | adantr 276 | . . . 4 |
9 | simpr 110 | . . . 4 | |
10 | btwnapz.ab | . . . . 5 | |
11 | 10 | adantr 276 | . . . 4 |
12 | 3, 8, 5, 9, 11 | lelttrd 8056 | . . 3 |
13 | 3, 5, 12 | gtapd 8568 | . 2 # |
14 | 4 | adantr 276 | . . 3 |
15 | 2 | adantr 276 | . . 3 |
16 | peano2re 8067 | . . . . . 6 | |
17 | 7, 16 | syl 14 | . . . . 5 |
18 | 17 | adantr 276 | . . . 4 |
19 | btwnapz.ba | . . . . 5 | |
20 | 19 | adantr 276 | . . . 4 |
21 | zltp1le 9278 | . . . . . 6 | |
22 | 6, 1, 21 | syl2anc 411 | . . . . 5 |
23 | 22 | biimpa 296 | . . . 4 |
24 | 14, 18, 15, 20, 23 | ltletrd 8354 | . . 3 |
25 | 14, 15, 24 | ltapd 8569 | . 2 # |
26 | zlelttric 9269 | . . 3 | |
27 | 1, 6, 26 | syl2anc 411 | . 2 |
28 | 13, 25, 27 | mpjaodan 798 | 1 # |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 104 wb 105 wo 708 wcel 2146 class class class wbr 3998 (class class class)co 5865 cr 7785 c1 7787 caddc 7789 clt 7966 cle 7967 # cap 8512 cz 9224 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 ax-un 4427 ax-setind 4530 ax-cnex 7877 ax-resscn 7878 ax-1cn 7879 ax-1re 7880 ax-icn 7881 ax-addcl 7882 ax-addrcl 7883 ax-mulcl 7884 ax-mulrcl 7885 ax-addcom 7886 ax-mulcom 7887 ax-addass 7888 ax-mulass 7889 ax-distr 7890 ax-i2m1 7891 ax-0lt1 7892 ax-1rid 7893 ax-0id 7894 ax-rnegex 7895 ax-precex 7896 ax-cnre 7897 ax-pre-ltirr 7898 ax-pre-ltwlin 7899 ax-pre-lttrn 7900 ax-pre-apti 7901 ax-pre-ltadd 7902 ax-pre-mulgt0 7903 |
This theorem depends on definitions: df-bi 117 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-nel 2441 df-ral 2458 df-rex 2459 df-reu 2460 df-rab 2462 df-v 2737 df-sbc 2961 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-int 3841 df-br 3999 df-opab 4060 df-id 4287 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-iota 5170 df-fun 5210 df-fv 5216 df-riota 5821 df-ov 5868 df-oprab 5869 df-mpo 5870 df-pnf 7968 df-mnf 7969 df-xr 7970 df-ltxr 7971 df-le 7972 df-sub 8104 df-neg 8105 df-reap 8506 df-ap 8513 df-inn 8891 df-n0 9148 df-z 9225 |
This theorem is referenced by: eirraplem 11750 |
Copyright terms: Public domain | W3C validator |