ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nonsq Unicode version

Theorem nonsq 12529
Description: Any integer strictly between two adjacent squares has a non-rational square root. (Contributed by Stefan O'Rear, 15-Sep-2014.)
Assertion
Ref Expression
nonsq  |-  ( ( ( A  e.  NN0  /\  B  e.  NN0 )  /\  ( ( B ^
2 )  <  A  /\  A  <  ( ( B  +  1 ) ^ 2 ) ) )  ->  -.  ( sqr `  A )  e.  QQ )

Proof of Theorem nonsq
StepHypRef Expression
1 nn0z 9392 . . . 4  |-  ( B  e.  NN0  ->  B  e.  ZZ )
21ad2antlr 489 . . 3  |-  ( ( ( A  e.  NN0  /\  B  e.  NN0 )  /\  ( ( B ^
2 )  <  A  /\  A  <  ( ( B  +  1 ) ^ 2 ) ) )  ->  B  e.  ZZ )
3 simprl 529 . . . . 5  |-  ( ( ( A  e.  NN0  /\  B  e.  NN0 )  /\  ( ( B ^
2 )  <  A  /\  A  <  ( ( B  +  1 ) ^ 2 ) ) )  ->  ( B ^ 2 )  < 
A )
4 simpll 527 . . . . . . 7  |-  ( ( ( A  e.  NN0  /\  B  e.  NN0 )  /\  ( ( B ^
2 )  <  A  /\  A  <  ( ( B  +  1 ) ^ 2 ) ) )  ->  A  e.  NN0 )
54nn0red 9349 . . . . . 6  |-  ( ( ( A  e.  NN0  /\  B  e.  NN0 )  /\  ( ( B ^
2 )  <  A  /\  A  <  ( ( B  +  1 ) ^ 2 ) ) )  ->  A  e.  RR )
64nn0ge0d 9351 . . . . . 6  |-  ( ( ( A  e.  NN0  /\  B  e.  NN0 )  /\  ( ( B ^
2 )  <  A  /\  A  <  ( ( B  +  1 ) ^ 2 ) ) )  ->  0  <_  A )
7 resqrtth 11342 . . . . . 6  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( ( sqr `  A
) ^ 2 )  =  A )
85, 6, 7syl2anc 411 . . . . 5  |-  ( ( ( A  e.  NN0  /\  B  e.  NN0 )  /\  ( ( B ^
2 )  <  A  /\  A  <  ( ( B  +  1 ) ^ 2 ) ) )  ->  ( ( sqr `  A ) ^
2 )  =  A )
93, 8breqtrrd 4072 . . . 4  |-  ( ( ( A  e.  NN0  /\  B  e.  NN0 )  /\  ( ( B ^
2 )  <  A  /\  A  <  ( ( B  +  1 ) ^ 2 ) ) )  ->  ( B ^ 2 )  < 
( ( sqr `  A
) ^ 2 ) )
10 simplr 528 . . . . . 6  |-  ( ( ( A  e.  NN0  /\  B  e.  NN0 )  /\  ( ( B ^
2 )  <  A  /\  A  <  ( ( B  +  1 ) ^ 2 ) ) )  ->  B  e.  NN0 )
1110nn0red 9349 . . . . 5  |-  ( ( ( A  e.  NN0  /\  B  e.  NN0 )  /\  ( ( B ^
2 )  <  A  /\  A  <  ( ( B  +  1 ) ^ 2 ) ) )  ->  B  e.  RR )
12 nn0re 9304 . . . . . . 7  |-  ( A  e.  NN0  ->  A  e.  RR )
1312ad2antrr 488 . . . . . 6  |-  ( ( ( A  e.  NN0  /\  B  e.  NN0 )  /\  ( ( B ^
2 )  <  A  /\  A  <  ( ( B  +  1 ) ^ 2 ) ) )  ->  A  e.  RR )
1413, 6resqrtcld 11474 . . . . 5  |-  ( ( ( A  e.  NN0  /\  B  e.  NN0 )  /\  ( ( B ^
2 )  <  A  /\  A  <  ( ( B  +  1 ) ^ 2 ) ) )  ->  ( sqr `  A )  e.  RR )
1510nn0ge0d 9351 . . . . 5  |-  ( ( ( A  e.  NN0  /\  B  e.  NN0 )  /\  ( ( B ^
2 )  <  A  /\  A  <  ( ( B  +  1 ) ^ 2 ) ) )  ->  0  <_  B )
1613, 6sqrtge0d 11477 . . . . 5  |-  ( ( ( A  e.  NN0  /\  B  e.  NN0 )  /\  ( ( B ^
2 )  <  A  /\  A  <  ( ( B  +  1 ) ^ 2 ) ) )  ->  0  <_  ( sqr `  A ) )
1711, 14, 15, 16lt2sqd 10849 . . . 4  |-  ( ( ( A  e.  NN0  /\  B  e.  NN0 )  /\  ( ( B ^
2 )  <  A  /\  A  <  ( ( B  +  1 ) ^ 2 ) ) )  ->  ( B  <  ( sqr `  A
)  <->  ( B ^
2 )  <  (
( sqr `  A
) ^ 2 ) ) )
189, 17mpbird 167 . . 3  |-  ( ( ( A  e.  NN0  /\  B  e.  NN0 )  /\  ( ( B ^
2 )  <  A  /\  A  <  ( ( B  +  1 ) ^ 2 ) ) )  ->  B  <  ( sqr `  A ) )
19 simprr 531 . . . . 5  |-  ( ( ( A  e.  NN0  /\  B  e.  NN0 )  /\  ( ( B ^
2 )  <  A  /\  A  <  ( ( B  +  1 ) ^ 2 ) ) )  ->  A  <  ( ( B  +  1 ) ^ 2 ) )
208, 19eqbrtrd 4066 . . . 4  |-  ( ( ( A  e.  NN0  /\  B  e.  NN0 )  /\  ( ( B ^
2 )  <  A  /\  A  <  ( ( B  +  1 ) ^ 2 ) ) )  ->  ( ( sqr `  A ) ^
2 )  <  (
( B  +  1 ) ^ 2 ) )
21 peano2re 8208 . . . . . 6  |-  ( B  e.  RR  ->  ( B  +  1 )  e.  RR )
2211, 21syl 14 . . . . 5  |-  ( ( ( A  e.  NN0  /\  B  e.  NN0 )  /\  ( ( B ^
2 )  <  A  /\  A  <  ( ( B  +  1 ) ^ 2 ) ) )  ->  ( B  +  1 )  e.  RR )
23 peano2nn0 9335 . . . . . . 7  |-  ( B  e.  NN0  ->  ( B  +  1 )  e. 
NN0 )
2423ad2antlr 489 . . . . . 6  |-  ( ( ( A  e.  NN0  /\  B  e.  NN0 )  /\  ( ( B ^
2 )  <  A  /\  A  <  ( ( B  +  1 ) ^ 2 ) ) )  ->  ( B  +  1 )  e. 
NN0 )
2524nn0ge0d 9351 . . . . 5  |-  ( ( ( A  e.  NN0  /\  B  e.  NN0 )  /\  ( ( B ^
2 )  <  A  /\  A  <  ( ( B  +  1 ) ^ 2 ) ) )  ->  0  <_  ( B  +  1 ) )
2614, 22, 16, 25lt2sqd 10849 . . . 4  |-  ( ( ( A  e.  NN0  /\  B  e.  NN0 )  /\  ( ( B ^
2 )  <  A  /\  A  <  ( ( B  +  1 ) ^ 2 ) ) )  ->  ( ( sqr `  A )  < 
( B  +  1 )  <->  ( ( sqr `  A ) ^ 2 )  <  ( ( B  +  1 ) ^ 2 ) ) )
2720, 26mpbird 167 . . 3  |-  ( ( ( A  e.  NN0  /\  B  e.  NN0 )  /\  ( ( B ^
2 )  <  A  /\  A  <  ( ( B  +  1 ) ^ 2 ) ) )  ->  ( sqr `  A )  <  ( B  +  1 ) )
28 btwnnz 9467 . . 3  |-  ( ( B  e.  ZZ  /\  B  <  ( sqr `  A
)  /\  ( sqr `  A )  <  ( B  +  1 ) )  ->  -.  ( sqr `  A )  e.  ZZ )
292, 18, 27, 28syl3anc 1250 . 2  |-  ( ( ( A  e.  NN0  /\  B  e.  NN0 )  /\  ( ( B ^
2 )  <  A  /\  A  <  ( ( B  +  1 ) ^ 2 ) ) )  ->  -.  ( sqr `  A )  e.  ZZ )
30 nn0sqrtelqelz 12528 . . . 4  |-  ( ( A  e.  NN0  /\  ( sqr `  A )  e.  QQ )  -> 
( sqr `  A
)  e.  ZZ )
3130ex 115 . . 3  |-  ( A  e.  NN0  ->  ( ( sqr `  A )  e.  QQ  ->  ( sqr `  A )  e.  ZZ ) )
3231ad2antrr 488 . 2  |-  ( ( ( A  e.  NN0  /\  B  e.  NN0 )  /\  ( ( B ^
2 )  <  A  /\  A  <  ( ( B  +  1 ) ^ 2 ) ) )  ->  ( ( sqr `  A )  e.  QQ  ->  ( sqr `  A )  e.  ZZ ) )
3329, 32mtod 665 1  |-  ( ( ( A  e.  NN0  /\  B  e.  NN0 )  /\  ( ( B ^
2 )  <  A  /\  A  <  ( ( B  +  1 ) ^ 2 ) ) )  ->  -.  ( sqr `  A )  e.  QQ )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2176   class class class wbr 4044   ` cfv 5271  (class class class)co 5944   RRcr 7924   0cc0 7925   1c1 7926    + caddc 7928    < clt 8107    <_ cle 8108   2c2 9087   NN0cn0 9295   ZZcz 9372   QQcq 9740   ^cexp 10683   sqrcsqrt 11307
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-iinf 4636  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-mulrcl 8024  ax-addcom 8025  ax-mulcom 8026  ax-addass 8027  ax-mulass 8028  ax-distr 8029  ax-i2m1 8030  ax-0lt1 8031  ax-1rid 8032  ax-0id 8033  ax-rnegex 8034  ax-precex 8035  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-apti 8040  ax-pre-ltadd 8041  ax-pre-mulgt0 8042  ax-pre-mulext 8043  ax-arch 8044  ax-caucvg 8045
This theorem depends on definitions:  df-bi 117  df-stab 833  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-id 4340  df-po 4343  df-iso 4344  df-iord 4413  df-on 4415  df-ilim 4416  df-suc 4418  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-recs 6391  df-frec 6477  df-sup 7086  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-sub 8245  df-neg 8246  df-reap 8648  df-ap 8655  df-div 8746  df-inn 9037  df-2 9095  df-3 9096  df-4 9097  df-n0 9296  df-z 9373  df-uz 9649  df-q 9741  df-rp 9776  df-fz 10131  df-fzo 10265  df-fl 10413  df-mod 10468  df-seqfrec 10593  df-exp 10684  df-cj 11153  df-re 11154  df-im 11155  df-rsqrt 11309  df-abs 11310  df-dvds 12099  df-gcd 12275  df-numer 12505  df-denom 12506
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator