![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > clim0c | GIF version |
Description: Express the predicate 𝐹 converges to 0. (Contributed by NM, 24-Feb-2008.) (Revised by Mario Carneiro, 31-Jan-2014.) |
Ref | Expression |
---|---|
clim0.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
clim0.2 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
clim0.3 | ⊢ (𝜑 → 𝐹 ∈ 𝑉) |
clim0.4 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐵) |
clim0c.6 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ ℂ) |
Ref | Expression |
---|---|
clim0c | ⊢ (𝜑 → (𝐹 ⇝ 0 ↔ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘𝐵) < 𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clim0.1 | . . 3 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
2 | clim0.2 | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
3 | clim0.3 | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝑉) | |
4 | clim0.4 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐵) | |
5 | 0cnd 7677 | . . 3 ⊢ (𝜑 → 0 ∈ ℂ) | |
6 | clim0c.6 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ ℂ) | |
7 | 1, 2, 3, 4, 5, 6 | clim2c 10939 | . 2 ⊢ (𝜑 → (𝐹 ⇝ 0 ↔ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘(𝐵 − 0)) < 𝑥)) |
8 | 1 | uztrn2 9239 | . . . . . . 7 ⊢ ((𝑗 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → 𝑘 ∈ 𝑍) |
9 | 6 | subid1d 7979 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐵 − 0) = 𝐵) |
10 | 9 | fveq2d 5377 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (abs‘(𝐵 − 0)) = (abs‘𝐵)) |
11 | 10 | breq1d 3903 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((abs‘(𝐵 − 0)) < 𝑥 ↔ (abs‘𝐵) < 𝑥)) |
12 | 8, 11 | sylan2 282 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑗))) → ((abs‘(𝐵 − 0)) < 𝑥 ↔ (abs‘𝐵) < 𝑥)) |
13 | 12 | anassrs 395 | . . . . 5 ⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → ((abs‘(𝐵 − 0)) < 𝑥 ↔ (abs‘𝐵) < 𝑥)) |
14 | 13 | ralbidva 2405 | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘(𝐵 − 0)) < 𝑥 ↔ ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘𝐵) < 𝑥)) |
15 | 14 | rexbidva 2406 | . . 3 ⊢ (𝜑 → (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘(𝐵 − 0)) < 𝑥 ↔ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘𝐵) < 𝑥)) |
16 | 15 | ralbidv 2409 | . 2 ⊢ (𝜑 → (∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘(𝐵 − 0)) < 𝑥 ↔ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘𝐵) < 𝑥)) |
17 | 7, 16 | bitrd 187 | 1 ⊢ (𝜑 → (𝐹 ⇝ 0 ↔ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘𝐵) < 𝑥)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1312 ∈ wcel 1461 ∀wral 2388 ∃wrex 2389 class class class wbr 3893 ‘cfv 5079 (class class class)co 5726 ℂcc 7539 0cc0 7541 < clt 7718 − cmin 7850 ℤcz 8952 ℤ≥cuz 9222 ℝ+crp 9337 abscabs 10655 ⇝ cli 10933 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 586 ax-in2 587 ax-io 681 ax-5 1404 ax-7 1405 ax-gen 1406 ax-ie1 1450 ax-ie2 1451 ax-8 1463 ax-10 1464 ax-11 1465 ax-i12 1466 ax-bndl 1467 ax-4 1468 ax-13 1472 ax-14 1473 ax-17 1487 ax-i9 1491 ax-ial 1495 ax-i5r 1496 ax-ext 2095 ax-sep 4004 ax-pow 4056 ax-pr 4089 ax-un 4313 ax-setind 4410 ax-cnex 7630 ax-resscn 7631 ax-1cn 7632 ax-1re 7633 ax-icn 7634 ax-addcl 7635 ax-addrcl 7636 ax-mulcl 7637 ax-addcom 7639 ax-addass 7641 ax-distr 7643 ax-i2m1 7644 ax-0lt1 7645 ax-0id 7647 ax-rnegex 7648 ax-cnre 7650 ax-pre-ltirr 7651 ax-pre-ltwlin 7652 ax-pre-lttrn 7653 ax-pre-apti 7654 ax-pre-ltadd 7655 |
This theorem depends on definitions: df-bi 116 df-dc 803 df-3or 944 df-3an 945 df-tru 1315 df-fal 1318 df-nf 1418 df-sb 1717 df-eu 1976 df-mo 1977 df-clab 2100 df-cleq 2106 df-clel 2109 df-nfc 2242 df-ne 2281 df-nel 2376 df-ral 2393 df-rex 2394 df-reu 2395 df-rab 2397 df-v 2657 df-sbc 2877 df-dif 3037 df-un 3039 df-in 3041 df-ss 3048 df-if 3439 df-pw 3476 df-sn 3497 df-pr 3498 df-op 3500 df-uni 3701 df-int 3736 df-br 3894 df-opab 3948 df-mpt 3949 df-id 4173 df-xp 4503 df-rel 4504 df-cnv 4505 df-co 4506 df-dm 4507 df-rn 4508 df-res 4509 df-ima 4510 df-iota 5044 df-fun 5081 df-fn 5082 df-f 5083 df-fv 5087 df-riota 5682 df-ov 5729 df-oprab 5730 df-mpo 5731 df-pnf 7720 df-mnf 7721 df-xr 7722 df-ltxr 7723 df-le 7724 df-sub 7852 df-neg 7853 df-inn 8625 df-n0 8876 df-z 8953 df-uz 9223 df-clim 10934 |
This theorem is referenced by: climabs0 10962 serf0 11007 divcnv 11152 |
Copyright terms: Public domain | W3C validator |