ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  conjsubgen Unicode version

Theorem conjsubgen 13484
Description: A conjugated subgroup is equinumerous to the original subgroup. (Contributed by Mario Carneiro, 18-Jan-2015.)
Hypotheses
Ref Expression
conjghm.x  |-  X  =  ( Base `  G
)
conjghm.p  |-  .+  =  ( +g  `  G )
conjghm.m  |-  .-  =  ( -g `  G )
conjsubg.f  |-  F  =  ( x  e.  S  |->  ( ( A  .+  x )  .-  A
) )
Assertion
Ref Expression
conjsubgen  |-  ( ( S  e.  (SubGrp `  G )  /\  A  e.  X )  ->  S  ~~  ran  F )
Distinct variable groups:    x,  .-    x,  .+    x, A    x, G    x, S    x, X
Allowed substitution hint:    F( x)

Proof of Theorem conjsubgen
StepHypRef Expression
1 subgrcl 13385 . . . . . . 7  |-  ( S  e.  (SubGrp `  G
)  ->  G  e.  Grp )
2 conjghm.x . . . . . . . 8  |-  X  =  ( Base `  G
)
3 conjghm.p . . . . . . . 8  |-  .+  =  ( +g  `  G )
4 conjghm.m . . . . . . . 8  |-  .-  =  ( -g `  G )
5 eqid 2196 . . . . . . . 8  |-  ( x  e.  X  |->  ( ( A  .+  x ) 
.-  A ) )  =  ( x  e.  X  |->  ( ( A 
.+  x )  .-  A ) )
62, 3, 4, 5conjghm 13482 . . . . . . 7  |-  ( ( G  e.  Grp  /\  A  e.  X )  ->  ( ( x  e.  X  |->  ( ( A 
.+  x )  .-  A ) )  e.  ( G  GrpHom  G )  /\  ( x  e.  X  |->  ( ( A 
.+  x )  .-  A ) ) : X -1-1-onto-> X ) )
71, 6sylan 283 . . . . . 6  |-  ( ( S  e.  (SubGrp `  G )  /\  A  e.  X )  ->  (
( x  e.  X  |->  ( ( A  .+  x )  .-  A
) )  e.  ( G  GrpHom  G )  /\  ( x  e.  X  |->  ( ( A  .+  x )  .-  A
) ) : X -1-1-onto-> X
) )
8 f1of1 5506 . . . . . 6  |-  ( ( x  e.  X  |->  ( ( A  .+  x
)  .-  A )
) : X -1-1-onto-> X  -> 
( x  e.  X  |->  ( ( A  .+  x )  .-  A
) ) : X -1-1-> X )
97, 8simpl2im 386 . . . . 5  |-  ( ( S  e.  (SubGrp `  G )  /\  A  e.  X )  ->  (
x  e.  X  |->  ( ( A  .+  x
)  .-  A )
) : X -1-1-> X
)
102subgss 13380 . . . . . 6  |-  ( S  e.  (SubGrp `  G
)  ->  S  C_  X
)
1110adantr 276 . . . . 5  |-  ( ( S  e.  (SubGrp `  G )  /\  A  e.  X )  ->  S  C_  X )
12 f1ssres 5475 . . . . 5  |-  ( ( ( x  e.  X  |->  ( ( A  .+  x )  .-  A
) ) : X -1-1-> X  /\  S  C_  X
)  ->  ( (
x  e.  X  |->  ( ( A  .+  x
)  .-  A )
)  |`  S ) : S -1-1-> X )
139, 11, 12syl2anc 411 . . . 4  |-  ( ( S  e.  (SubGrp `  G )  /\  A  e.  X )  ->  (
( x  e.  X  |->  ( ( A  .+  x )  .-  A
) )  |`  S ) : S -1-1-> X )
1411resmptd 4998 . . . . . 6  |-  ( ( S  e.  (SubGrp `  G )  /\  A  e.  X )  ->  (
( x  e.  X  |->  ( ( A  .+  x )  .-  A
) )  |`  S )  =  ( x  e.  S  |->  ( ( A 
.+  x )  .-  A ) ) )
15 conjsubg.f . . . . . 6  |-  F  =  ( x  e.  S  |->  ( ( A  .+  x )  .-  A
) )
1614, 15eqtr4di 2247 . . . . 5  |-  ( ( S  e.  (SubGrp `  G )  /\  A  e.  X )  ->  (
( x  e.  X  |->  ( ( A  .+  x )  .-  A
) )  |`  S )  =  F )
17 f1eq1 5461 . . . . 5  |-  ( ( ( x  e.  X  |->  ( ( A  .+  x )  .-  A
) )  |`  S )  =  F  ->  (
( ( x  e.  X  |->  ( ( A 
.+  x )  .-  A ) )  |`  S ) : S -1-1-> X  <-> 
F : S -1-1-> X
) )
1816, 17syl 14 . . . 4  |-  ( ( S  e.  (SubGrp `  G )  /\  A  e.  X )  ->  (
( ( x  e.  X  |->  ( ( A 
.+  x )  .-  A ) )  |`  S ) : S -1-1-> X  <-> 
F : S -1-1-> X
) )
1913, 18mpbid 147 . . 3  |-  ( ( S  e.  (SubGrp `  G )  /\  A  e.  X )  ->  F : S -1-1-> X )
20 f1f1orn 5518 . . 3  |-  ( F : S -1-1-> X  ->  F : S -1-1-onto-> ran  F )
2119, 20syl 14 . 2  |-  ( ( S  e.  (SubGrp `  G )  /\  A  e.  X )  ->  F : S -1-1-onto-> ran  F )
22 f1oeng 6825 . 2  |-  ( ( S  e.  (SubGrp `  G )  /\  F : S -1-1-onto-> ran  F )  ->  S  ~~  ran  F )
2321, 22syldan 282 1  |-  ( ( S  e.  (SubGrp `  G )  /\  A  e.  X )  ->  S  ~~  ran  F )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2167    C_ wss 3157   class class class wbr 4034    |-> cmpt 4095   ran crn 4665    |` cres 4666   -1-1->wf1 5256   -1-1-onto->wf1o 5258   ` cfv 5259  (class class class)co 5925    ~~ cen 6806   Basecbs 12703   +g cplusg 12780   Grpcgrp 13202   -gcsg 13204  SubGrpcsubg 13373    GrpHom cghm 13446
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1re 7990  ax-addrcl 7993
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-en 6809  df-inn 9008  df-2 9066  df-ndx 12706  df-slot 12707  df-base 12709  df-plusg 12793  df-0g 12960  df-mgm 13058  df-sgrp 13104  df-mnd 13119  df-grp 13205  df-minusg 13206  df-sbg 13207  df-subg 13376  df-ghm 13447
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator