ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  conjsubgen GIF version

Theorem conjsubgen 13214
Description: A conjugated subgroup is equinumerous to the original subgroup. (Contributed by Mario Carneiro, 18-Jan-2015.)
Hypotheses
Ref Expression
conjghm.x 𝑋 = (Base‘𝐺)
conjghm.p + = (+g𝐺)
conjghm.m = (-g𝐺)
conjsubg.f 𝐹 = (𝑥𝑆 ↦ ((𝐴 + 𝑥) 𝐴))
Assertion
Ref Expression
conjsubgen ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑋) → 𝑆 ≈ ran 𝐹)
Distinct variable groups:   𝑥,   𝑥, +   𝑥,𝐴   𝑥,𝐺   𝑥,𝑆   𝑥,𝑋
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem conjsubgen
StepHypRef Expression
1 subgrcl 13115 . . . . . . 7 (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
2 conjghm.x . . . . . . . 8 𝑋 = (Base‘𝐺)
3 conjghm.p . . . . . . . 8 + = (+g𝐺)
4 conjghm.m . . . . . . . 8 = (-g𝐺)
5 eqid 2189 . . . . . . . 8 (𝑥𝑋 ↦ ((𝐴 + 𝑥) 𝐴)) = (𝑥𝑋 ↦ ((𝐴 + 𝑥) 𝐴))
62, 3, 4, 5conjghm 13212 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → ((𝑥𝑋 ↦ ((𝐴 + 𝑥) 𝐴)) ∈ (𝐺 GrpHom 𝐺) ∧ (𝑥𝑋 ↦ ((𝐴 + 𝑥) 𝐴)):𝑋1-1-onto𝑋))
71, 6sylan 283 . . . . . 6 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑋) → ((𝑥𝑋 ↦ ((𝐴 + 𝑥) 𝐴)) ∈ (𝐺 GrpHom 𝐺) ∧ (𝑥𝑋 ↦ ((𝐴 + 𝑥) 𝐴)):𝑋1-1-onto𝑋))
8 f1of1 5479 . . . . . 6 ((𝑥𝑋 ↦ ((𝐴 + 𝑥) 𝐴)):𝑋1-1-onto𝑋 → (𝑥𝑋 ↦ ((𝐴 + 𝑥) 𝐴)):𝑋1-1𝑋)
97, 8simpl2im 386 . . . . 5 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑋) → (𝑥𝑋 ↦ ((𝐴 + 𝑥) 𝐴)):𝑋1-1𝑋)
102subgss 13110 . . . . . 6 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆𝑋)
1110adantr 276 . . . . 5 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑋) → 𝑆𝑋)
12 f1ssres 5449 . . . . 5 (((𝑥𝑋 ↦ ((𝐴 + 𝑥) 𝐴)):𝑋1-1𝑋𝑆𝑋) → ((𝑥𝑋 ↦ ((𝐴 + 𝑥) 𝐴)) ↾ 𝑆):𝑆1-1𝑋)
139, 11, 12syl2anc 411 . . . 4 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑋) → ((𝑥𝑋 ↦ ((𝐴 + 𝑥) 𝐴)) ↾ 𝑆):𝑆1-1𝑋)
1411resmptd 4976 . . . . . 6 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑋) → ((𝑥𝑋 ↦ ((𝐴 + 𝑥) 𝐴)) ↾ 𝑆) = (𝑥𝑆 ↦ ((𝐴 + 𝑥) 𝐴)))
15 conjsubg.f . . . . . 6 𝐹 = (𝑥𝑆 ↦ ((𝐴 + 𝑥) 𝐴))
1614, 15eqtr4di 2240 . . . . 5 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑋) → ((𝑥𝑋 ↦ ((𝐴 + 𝑥) 𝐴)) ↾ 𝑆) = 𝐹)
17 f1eq1 5435 . . . . 5 (((𝑥𝑋 ↦ ((𝐴 + 𝑥) 𝐴)) ↾ 𝑆) = 𝐹 → (((𝑥𝑋 ↦ ((𝐴 + 𝑥) 𝐴)) ↾ 𝑆):𝑆1-1𝑋𝐹:𝑆1-1𝑋))
1816, 17syl 14 . . . 4 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑋) → (((𝑥𝑋 ↦ ((𝐴 + 𝑥) 𝐴)) ↾ 𝑆):𝑆1-1𝑋𝐹:𝑆1-1𝑋))
1913, 18mpbid 147 . . 3 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑋) → 𝐹:𝑆1-1𝑋)
20 f1f1orn 5491 . . 3 (𝐹:𝑆1-1𝑋𝐹:𝑆1-1-onto→ran 𝐹)
2119, 20syl 14 . 2 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑋) → 𝐹:𝑆1-1-onto→ran 𝐹)
22 f1oeng 6782 . 2 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐹:𝑆1-1-onto→ran 𝐹) → 𝑆 ≈ ran 𝐹)
2321, 22syldan 282 1 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑋) → 𝑆 ≈ ran 𝐹)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2160  wss 3144   class class class wbr 4018  cmpt 4079  ran crn 4645  cres 4646  1-1wf1 5232  1-1-ontowf1o 5234  cfv 5235  (class class class)co 5895  cen 6763  Basecbs 12511  +gcplusg 12586  Grpcgrp 12942  -gcsg 12944  SubGrpcsubg 13103   GrpHom cghm 13176
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-cnex 7931  ax-resscn 7932  ax-1re 7934  ax-addrcl 7937
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4311  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-riota 5851  df-ov 5898  df-oprab 5899  df-mpo 5900  df-1st 6164  df-2nd 6165  df-en 6766  df-inn 8949  df-2 9007  df-ndx 12514  df-slot 12515  df-base 12517  df-plusg 12599  df-0g 12760  df-mgm 12829  df-sgrp 12862  df-mnd 12875  df-grp 12945  df-minusg 12946  df-sbg 12947  df-subg 13106  df-ghm 13177
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator