ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  conjsubgen GIF version

Theorem conjsubgen 13664
Description: A conjugated subgroup is equinumerous to the original subgroup. (Contributed by Mario Carneiro, 18-Jan-2015.)
Hypotheses
Ref Expression
conjghm.x 𝑋 = (Base‘𝐺)
conjghm.p + = (+g𝐺)
conjghm.m = (-g𝐺)
conjsubg.f 𝐹 = (𝑥𝑆 ↦ ((𝐴 + 𝑥) 𝐴))
Assertion
Ref Expression
conjsubgen ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑋) → 𝑆 ≈ ran 𝐹)
Distinct variable groups:   𝑥,   𝑥, +   𝑥,𝐴   𝑥,𝐺   𝑥,𝑆   𝑥,𝑋
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem conjsubgen
StepHypRef Expression
1 subgrcl 13565 . . . . . . 7 (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
2 conjghm.x . . . . . . . 8 𝑋 = (Base‘𝐺)
3 conjghm.p . . . . . . . 8 + = (+g𝐺)
4 conjghm.m . . . . . . . 8 = (-g𝐺)
5 eqid 2206 . . . . . . . 8 (𝑥𝑋 ↦ ((𝐴 + 𝑥) 𝐴)) = (𝑥𝑋 ↦ ((𝐴 + 𝑥) 𝐴))
62, 3, 4, 5conjghm 13662 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → ((𝑥𝑋 ↦ ((𝐴 + 𝑥) 𝐴)) ∈ (𝐺 GrpHom 𝐺) ∧ (𝑥𝑋 ↦ ((𝐴 + 𝑥) 𝐴)):𝑋1-1-onto𝑋))
71, 6sylan 283 . . . . . 6 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑋) → ((𝑥𝑋 ↦ ((𝐴 + 𝑥) 𝐴)) ∈ (𝐺 GrpHom 𝐺) ∧ (𝑥𝑋 ↦ ((𝐴 + 𝑥) 𝐴)):𝑋1-1-onto𝑋))
8 f1of1 5530 . . . . . 6 ((𝑥𝑋 ↦ ((𝐴 + 𝑥) 𝐴)):𝑋1-1-onto𝑋 → (𝑥𝑋 ↦ ((𝐴 + 𝑥) 𝐴)):𝑋1-1𝑋)
97, 8simpl2im 386 . . . . 5 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑋) → (𝑥𝑋 ↦ ((𝐴 + 𝑥) 𝐴)):𝑋1-1𝑋)
102subgss 13560 . . . . . 6 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆𝑋)
1110adantr 276 . . . . 5 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑋) → 𝑆𝑋)
12 f1ssres 5499 . . . . 5 (((𝑥𝑋 ↦ ((𝐴 + 𝑥) 𝐴)):𝑋1-1𝑋𝑆𝑋) → ((𝑥𝑋 ↦ ((𝐴 + 𝑥) 𝐴)) ↾ 𝑆):𝑆1-1𝑋)
139, 11, 12syl2anc 411 . . . 4 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑋) → ((𝑥𝑋 ↦ ((𝐴 + 𝑥) 𝐴)) ↾ 𝑆):𝑆1-1𝑋)
1411resmptd 5016 . . . . . 6 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑋) → ((𝑥𝑋 ↦ ((𝐴 + 𝑥) 𝐴)) ↾ 𝑆) = (𝑥𝑆 ↦ ((𝐴 + 𝑥) 𝐴)))
15 conjsubg.f . . . . . 6 𝐹 = (𝑥𝑆 ↦ ((𝐴 + 𝑥) 𝐴))
1614, 15eqtr4di 2257 . . . . 5 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑋) → ((𝑥𝑋 ↦ ((𝐴 + 𝑥) 𝐴)) ↾ 𝑆) = 𝐹)
17 f1eq1 5485 . . . . 5 (((𝑥𝑋 ↦ ((𝐴 + 𝑥) 𝐴)) ↾ 𝑆) = 𝐹 → (((𝑥𝑋 ↦ ((𝐴 + 𝑥) 𝐴)) ↾ 𝑆):𝑆1-1𝑋𝐹:𝑆1-1𝑋))
1816, 17syl 14 . . . 4 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑋) → (((𝑥𝑋 ↦ ((𝐴 + 𝑥) 𝐴)) ↾ 𝑆):𝑆1-1𝑋𝐹:𝑆1-1𝑋))
1913, 18mpbid 147 . . 3 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑋) → 𝐹:𝑆1-1𝑋)
20 f1f1orn 5542 . . 3 (𝐹:𝑆1-1𝑋𝐹:𝑆1-1-onto→ran 𝐹)
2119, 20syl 14 . 2 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑋) → 𝐹:𝑆1-1-onto→ran 𝐹)
22 f1oeng 6858 . 2 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐹:𝑆1-1-onto→ran 𝐹) → 𝑆 ≈ ran 𝐹)
2321, 22syldan 282 1 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑋) → 𝑆 ≈ ran 𝐹)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1373  wcel 2177  wss 3168   class class class wbr 4048  cmpt 4110  ran crn 4681  cres 4682  1-1wf1 5274  1-1-ontowf1o 5276  cfv 5277  (class class class)co 5954  cen 6835  Basecbs 12882  +gcplusg 12959  Grpcgrp 13382  -gcsg 13384  SubGrpcsubg 13553   GrpHom cghm 13626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4164  ax-sep 4167  ax-pow 4223  ax-pr 4258  ax-un 4485  ax-setind 4590  ax-cnex 8029  ax-resscn 8030  ax-1re 8032  ax-addrcl 8035
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3001  df-csb 3096  df-dif 3170  df-un 3172  df-in 3174  df-ss 3181  df-pw 3620  df-sn 3641  df-pr 3642  df-op 3644  df-uni 3854  df-int 3889  df-iun 3932  df-br 4049  df-opab 4111  df-mpt 4112  df-id 4345  df-xp 4686  df-rel 4687  df-cnv 4688  df-co 4689  df-dm 4690  df-rn 4691  df-res 4692  df-ima 4693  df-iota 5238  df-fun 5279  df-fn 5280  df-f 5281  df-f1 5282  df-fo 5283  df-f1o 5284  df-fv 5285  df-riota 5909  df-ov 5957  df-oprab 5958  df-mpo 5959  df-1st 6236  df-2nd 6237  df-en 6838  df-inn 9050  df-2 9108  df-ndx 12885  df-slot 12886  df-base 12888  df-plusg 12972  df-0g 13140  df-mgm 13238  df-sgrp 13284  df-mnd 13299  df-grp 13385  df-minusg 13386  df-sbg 13387  df-subg 13556  df-ghm 13627
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator