Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > oddm1even | Unicode version |
Description: An integer is odd iff its predecessor is even. (Contributed by Mario Carneiro, 5-Sep-2016.) |
Ref | Expression |
---|---|
oddm1even |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 108 | . . . . . 6 | |
2 | 1 | zcnd 9322 | . . . . 5 |
3 | 1cnd 7923 | . . . . 5 | |
4 | 2cnd 8938 | . . . . . 6 | |
5 | simpr 109 | . . . . . . 7 | |
6 | 5 | zcnd 9322 | . . . . . 6 |
7 | 4, 6 | mulcld 7927 | . . . . 5 |
8 | 2, 3, 7 | subadd2d 8236 | . . . 4 |
9 | eqcom 2172 | . . . . 5 | |
10 | 4, 6 | mulcomd 7928 | . . . . . 6 |
11 | 10 | eqeq1d 2179 | . . . . 5 |
12 | 9, 11 | syl5bb 191 | . . . 4 |
13 | 8, 12 | bitr3d 189 | . . 3 |
14 | 13 | rexbidva 2467 | . 2 |
15 | odd2np1 11819 | . 2 | |
16 | 2z 9227 | . . 3 | |
17 | peano2zm 9237 | . . 3 | |
18 | divides 11738 | . . 3 | |
19 | 16, 17, 18 | sylancr 412 | . 2 |
20 | 14, 15, 19 | 3bitr4d 219 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wceq 1348 wcel 2141 wrex 2449 class class class wbr 3987 (class class class)co 5850 c1 7762 caddc 7764 cmul 7766 cmin 8077 c2 8916 cz 9199 cdvds 11736 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4105 ax-pow 4158 ax-pr 4192 ax-un 4416 ax-setind 4519 ax-cnex 7852 ax-resscn 7853 ax-1cn 7854 ax-1re 7855 ax-icn 7856 ax-addcl 7857 ax-addrcl 7858 ax-mulcl 7859 ax-mulrcl 7860 ax-addcom 7861 ax-mulcom 7862 ax-addass 7863 ax-mulass 7864 ax-distr 7865 ax-i2m1 7866 ax-0lt1 7867 ax-1rid 7868 ax-0id 7869 ax-rnegex 7870 ax-precex 7871 ax-cnre 7872 ax-pre-ltirr 7873 ax-pre-ltwlin 7874 ax-pre-lttrn 7875 ax-pre-apti 7876 ax-pre-ltadd 7877 ax-pre-mulgt0 7878 ax-pre-mulext 7879 |
This theorem depends on definitions: df-bi 116 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-xor 1371 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rmo 2456 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-int 3830 df-br 3988 df-opab 4049 df-id 4276 df-po 4279 df-iso 4280 df-xp 4615 df-rel 4616 df-cnv 4617 df-co 4618 df-dm 4619 df-iota 5158 df-fun 5198 df-fv 5204 df-riota 5806 df-ov 5853 df-oprab 5854 df-mpo 5855 df-pnf 7943 df-mnf 7944 df-xr 7945 df-ltxr 7946 df-le 7947 df-sub 8079 df-neg 8080 df-reap 8481 df-ap 8488 df-div 8577 df-inn 8866 df-2 8924 df-n0 9123 df-z 9200 df-dvds 11737 |
This theorem is referenced by: oddp1even 11822 n2dvds3 11861 oddennn 12334 |
Copyright terms: Public domain | W3C validator |