ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  coprmdvds2 Unicode version

Theorem coprmdvds2 12004
Description: If an integer is divisible by two coprime integers, then it is divisible by their product. (Contributed by Mario Carneiro, 24-Feb-2014.)
Assertion
Ref Expression
coprmdvds2  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  /\  ( M  gcd  N
)  =  1 )  ->  ( ( M 
||  K  /\  N  ||  K )  ->  ( M  x.  N )  ||  K ) )

Proof of Theorem coprmdvds2
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 divides 11715 . . . . . 6  |-  ( ( N  e.  ZZ  /\  K  e.  ZZ )  ->  ( N  ||  K  <->  E. x  e.  ZZ  (
x  x.  N )  =  K ) )
213adant1 1004 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  ( N  ||  K  <->  E. x  e.  ZZ  ( x  x.  N )  =  K ) )
32adantr 274 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  /\  ( M  gcd  N
)  =  1 )  ->  ( N  ||  K 
<->  E. x  e.  ZZ  ( x  x.  N
)  =  K ) )
4 simprr 522 . . . . . . . . . . 11  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  /\  ( ( M  gcd  N )  =  1  /\  x  e.  ZZ ) )  ->  x  e.  ZZ )
5 simpl2 990 . . . . . . . . . . 11  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  /\  ( ( M  gcd  N )  =  1  /\  x  e.  ZZ ) )  ->  N  e.  ZZ )
6 zcn 9187 . . . . . . . . . . . 12  |-  ( x  e.  ZZ  ->  x  e.  CC )
7 zcn 9187 . . . . . . . . . . . 12  |-  ( N  e.  ZZ  ->  N  e.  CC )
8 mulcom 7873 . . . . . . . . . . . 12  |-  ( ( x  e.  CC  /\  N  e.  CC )  ->  ( x  x.  N
)  =  ( N  x.  x ) )
96, 7, 8syl2an 287 . . . . . . . . . . 11  |-  ( ( x  e.  ZZ  /\  N  e.  ZZ )  ->  ( x  x.  N
)  =  ( N  x.  x ) )
104, 5, 9syl2anc 409 . . . . . . . . . 10  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  /\  ( ( M  gcd  N )  =  1  /\  x  e.  ZZ ) )  ->  ( x  x.  N )  =  ( N  x.  x ) )
1110breq2d 3988 . . . . . . . . 9  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  /\  ( ( M  gcd  N )  =  1  /\  x  e.  ZZ ) )  ->  ( M  ||  ( x  x.  N
)  <->  M  ||  ( N  x.  x ) ) )
12 simprl 521 . . . . . . . . . 10  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  /\  ( ( M  gcd  N )  =  1  /\  x  e.  ZZ ) )  ->  ( M  gcd  N )  =  1 )
13 simpl1 989 . . . . . . . . . . 11  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  /\  ( ( M  gcd  N )  =  1  /\  x  e.  ZZ ) )  ->  M  e.  ZZ )
14 coprmdvds 12003 . . . . . . . . . . 11  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  x  e.  ZZ )  ->  (
( M  ||  ( N  x.  x )  /\  ( M  gcd  N
)  =  1 )  ->  M  ||  x
) )
1513, 5, 4, 14syl3anc 1227 . . . . . . . . . 10  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  /\  ( ( M  gcd  N )  =  1  /\  x  e.  ZZ ) )  ->  ( ( M  ||  ( N  x.  x )  /\  ( M  gcd  N )  =  1 )  ->  M  ||  x ) )
1612, 15mpan2d 425 . . . . . . . . 9  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  /\  ( ( M  gcd  N )  =  1  /\  x  e.  ZZ ) )  ->  ( M  ||  ( N  x.  x
)  ->  M  ||  x
) )
1711, 16sylbid 149 . . . . . . . 8  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  /\  ( ( M  gcd  N )  =  1  /\  x  e.  ZZ ) )  ->  ( M  ||  ( x  x.  N
)  ->  M  ||  x
) )
18 dvdsmulc 11745 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  x  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  ||  x  ->  ( M  x.  N )  ||  ( x  x.  N
) ) )
1913, 4, 5, 18syl3anc 1227 . . . . . . . 8  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  /\  ( ( M  gcd  N )  =  1  /\  x  e.  ZZ ) )  ->  ( M  ||  x  ->  ( M  x.  N )  ||  (
x  x.  N ) ) )
2017, 19syld 45 . . . . . . 7  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  /\  ( ( M  gcd  N )  =  1  /\  x  e.  ZZ ) )  ->  ( M  ||  ( x  x.  N
)  ->  ( M  x.  N )  ||  (
x  x.  N ) ) )
21 breq2 3980 . . . . . . . 8  |-  ( ( x  x.  N )  =  K  ->  ( M  ||  ( x  x.  N )  <->  M  ||  K
) )
22 breq2 3980 . . . . . . . 8  |-  ( ( x  x.  N )  =  K  ->  (
( M  x.  N
)  ||  ( x  x.  N )  <->  ( M  x.  N )  ||  K
) )
2321, 22imbi12d 233 . . . . . . 7  |-  ( ( x  x.  N )  =  K  ->  (
( M  ||  (
x  x.  N )  ->  ( M  x.  N )  ||  (
x  x.  N ) )  <->  ( M  ||  K  ->  ( M  x.  N )  ||  K
) ) )
2420, 23syl5ibcom 154 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  /\  ( ( M  gcd  N )  =  1  /\  x  e.  ZZ ) )  ->  ( (
x  x.  N )  =  K  ->  ( M  ||  K  ->  ( M  x.  N )  ||  K ) ) )
2524anassrs 398 . . . . 5  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  /\  ( M  gcd  N )  =  1 )  /\  x  e.  ZZ )  ->  (
( x  x.  N
)  =  K  -> 
( M  ||  K  ->  ( M  x.  N
)  ||  K )
) )
2625rexlimdva 2581 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  /\  ( M  gcd  N
)  =  1 )  ->  ( E. x  e.  ZZ  ( x  x.  N )  =  K  ->  ( M  ||  K  ->  ( M  x.  N )  ||  K
) ) )
273, 26sylbid 149 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  /\  ( M  gcd  N
)  =  1 )  ->  ( N  ||  K  ->  ( M  ||  K  ->  ( M  x.  N )  ||  K
) ) )
2827com23 78 . 2  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  /\  ( M  gcd  N
)  =  1 )  ->  ( M  ||  K  ->  ( N  ||  K  ->  ( M  x.  N )  ||  K
) ) )
2928impd 252 1  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  /\  ( M  gcd  N
)  =  1 )  ->  ( ( M 
||  K  /\  N  ||  K )  ->  ( M  x.  N )  ||  K ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 967    = wceq 1342    e. wcel 2135   E.wrex 2443   class class class wbr 3976  (class class class)co 5836   CCcc 7742   1c1 7745    x. cmul 7749   ZZcz 9182    || cdvds 11713    gcd cgcd 11860
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-coll 4091  ax-sep 4094  ax-nul 4102  ax-pow 4147  ax-pr 4181  ax-un 4405  ax-setind 4508  ax-iinf 4559  ax-cnex 7835  ax-resscn 7836  ax-1cn 7837  ax-1re 7838  ax-icn 7839  ax-addcl 7840  ax-addrcl 7841  ax-mulcl 7842  ax-mulrcl 7843  ax-addcom 7844  ax-mulcom 7845  ax-addass 7846  ax-mulass 7847  ax-distr 7848  ax-i2m1 7849  ax-0lt1 7850  ax-1rid 7851  ax-0id 7852  ax-rnegex 7853  ax-precex 7854  ax-cnre 7855  ax-pre-ltirr 7856  ax-pre-ltwlin 7857  ax-pre-lttrn 7858  ax-pre-apti 7859  ax-pre-ltadd 7860  ax-pre-mulgt0 7861  ax-pre-mulext 7862  ax-arch 7863  ax-caucvg 7864
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 968  df-3an 969  df-tru 1345  df-fal 1348  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ne 2335  df-nel 2430  df-ral 2447  df-rex 2448  df-reu 2449  df-rmo 2450  df-rab 2451  df-v 2723  df-sbc 2947  df-csb 3041  df-dif 3113  df-un 3115  df-in 3117  df-ss 3124  df-nul 3405  df-if 3516  df-pw 3555  df-sn 3576  df-pr 3577  df-op 3579  df-uni 3784  df-int 3819  df-iun 3862  df-br 3977  df-opab 4038  df-mpt 4039  df-tr 4075  df-id 4265  df-po 4268  df-iso 4269  df-iord 4338  df-on 4340  df-ilim 4341  df-suc 4343  df-iom 4562  df-xp 4604  df-rel 4605  df-cnv 4606  df-co 4607  df-dm 4608  df-rn 4609  df-res 4610  df-ima 4611  df-iota 5147  df-fun 5184  df-fn 5185  df-f 5186  df-f1 5187  df-fo 5188  df-f1o 5189  df-fv 5190  df-riota 5792  df-ov 5839  df-oprab 5840  df-mpo 5841  df-1st 6100  df-2nd 6101  df-recs 6264  df-frec 6350  df-sup 6940  df-pnf 7926  df-mnf 7927  df-xr 7928  df-ltxr 7929  df-le 7930  df-sub 8062  df-neg 8063  df-reap 8464  df-ap 8471  df-div 8560  df-inn 8849  df-2 8907  df-3 8908  df-4 8909  df-n0 9106  df-z 9183  df-uz 9458  df-q 9549  df-rp 9581  df-fz 9936  df-fzo 10068  df-fl 10195  df-mod 10248  df-seqfrec 10371  df-exp 10445  df-cj 10770  df-re 10771  df-im 10772  df-rsqrt 10926  df-abs 10927  df-dvds 11714  df-gcd 11861
This theorem is referenced by:  rpmulgcd2  12006  crth  12133
  Copyright terms: Public domain W3C validator