ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  coprmdvds2 Unicode version

Theorem coprmdvds2 12530
Description: If an integer is divisible by two coprime integers, then it is divisible by their product. (Contributed by Mario Carneiro, 24-Feb-2014.)
Assertion
Ref Expression
coprmdvds2  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  /\  ( M  gcd  N
)  =  1 )  ->  ( ( M 
||  K  /\  N  ||  K )  ->  ( M  x.  N )  ||  K ) )

Proof of Theorem coprmdvds2
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 divides 12215 . . . . . 6  |-  ( ( N  e.  ZZ  /\  K  e.  ZZ )  ->  ( N  ||  K  <->  E. x  e.  ZZ  (
x  x.  N )  =  K ) )
213adant1 1018 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  ( N  ||  K  <->  E. x  e.  ZZ  ( x  x.  N )  =  K ) )
32adantr 276 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  /\  ( M  gcd  N
)  =  1 )  ->  ( N  ||  K 
<->  E. x  e.  ZZ  ( x  x.  N
)  =  K ) )
4 simprr 531 . . . . . . . . . . 11  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  /\  ( ( M  gcd  N )  =  1  /\  x  e.  ZZ ) )  ->  x  e.  ZZ )
5 simpl2 1004 . . . . . . . . . . 11  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  /\  ( ( M  gcd  N )  =  1  /\  x  e.  ZZ ) )  ->  N  e.  ZZ )
6 zcn 9412 . . . . . . . . . . . 12  |-  ( x  e.  ZZ  ->  x  e.  CC )
7 zcn 9412 . . . . . . . . . . . 12  |-  ( N  e.  ZZ  ->  N  e.  CC )
8 mulcom 8089 . . . . . . . . . . . 12  |-  ( ( x  e.  CC  /\  N  e.  CC )  ->  ( x  x.  N
)  =  ( N  x.  x ) )
96, 7, 8syl2an 289 . . . . . . . . . . 11  |-  ( ( x  e.  ZZ  /\  N  e.  ZZ )  ->  ( x  x.  N
)  =  ( N  x.  x ) )
104, 5, 9syl2anc 411 . . . . . . . . . 10  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  /\  ( ( M  gcd  N )  =  1  /\  x  e.  ZZ ) )  ->  ( x  x.  N )  =  ( N  x.  x ) )
1110breq2d 4071 . . . . . . . . 9  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  /\  ( ( M  gcd  N )  =  1  /\  x  e.  ZZ ) )  ->  ( M  ||  ( x  x.  N
)  <->  M  ||  ( N  x.  x ) ) )
12 simprl 529 . . . . . . . . . 10  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  /\  ( ( M  gcd  N )  =  1  /\  x  e.  ZZ ) )  ->  ( M  gcd  N )  =  1 )
13 simpl1 1003 . . . . . . . . . . 11  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  /\  ( ( M  gcd  N )  =  1  /\  x  e.  ZZ ) )  ->  M  e.  ZZ )
14 coprmdvds 12529 . . . . . . . . . . 11  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  x  e.  ZZ )  ->  (
( M  ||  ( N  x.  x )  /\  ( M  gcd  N
)  =  1 )  ->  M  ||  x
) )
1513, 5, 4, 14syl3anc 1250 . . . . . . . . . 10  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  /\  ( ( M  gcd  N )  =  1  /\  x  e.  ZZ ) )  ->  ( ( M  ||  ( N  x.  x )  /\  ( M  gcd  N )  =  1 )  ->  M  ||  x ) )
1612, 15mpan2d 428 . . . . . . . . 9  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  /\  ( ( M  gcd  N )  =  1  /\  x  e.  ZZ ) )  ->  ( M  ||  ( N  x.  x
)  ->  M  ||  x
) )
1711, 16sylbid 150 . . . . . . . 8  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  /\  ( ( M  gcd  N )  =  1  /\  x  e.  ZZ ) )  ->  ( M  ||  ( x  x.  N
)  ->  M  ||  x
) )
18 dvdsmulc 12245 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  x  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  ||  x  ->  ( M  x.  N )  ||  ( x  x.  N
) ) )
1913, 4, 5, 18syl3anc 1250 . . . . . . . 8  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  /\  ( ( M  gcd  N )  =  1  /\  x  e.  ZZ ) )  ->  ( M  ||  x  ->  ( M  x.  N )  ||  (
x  x.  N ) ) )
2017, 19syld 45 . . . . . . 7  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  /\  ( ( M  gcd  N )  =  1  /\  x  e.  ZZ ) )  ->  ( M  ||  ( x  x.  N
)  ->  ( M  x.  N )  ||  (
x  x.  N ) ) )
21 breq2 4063 . . . . . . . 8  |-  ( ( x  x.  N )  =  K  ->  ( M  ||  ( x  x.  N )  <->  M  ||  K
) )
22 breq2 4063 . . . . . . . 8  |-  ( ( x  x.  N )  =  K  ->  (
( M  x.  N
)  ||  ( x  x.  N )  <->  ( M  x.  N )  ||  K
) )
2321, 22imbi12d 234 . . . . . . 7  |-  ( ( x  x.  N )  =  K  ->  (
( M  ||  (
x  x.  N )  ->  ( M  x.  N )  ||  (
x  x.  N ) )  <->  ( M  ||  K  ->  ( M  x.  N )  ||  K
) ) )
2420, 23syl5ibcom 155 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  /\  ( ( M  gcd  N )  =  1  /\  x  e.  ZZ ) )  ->  ( (
x  x.  N )  =  K  ->  ( M  ||  K  ->  ( M  x.  N )  ||  K ) ) )
2524anassrs 400 . . . . 5  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  /\  ( M  gcd  N )  =  1 )  /\  x  e.  ZZ )  ->  (
( x  x.  N
)  =  K  -> 
( M  ||  K  ->  ( M  x.  N
)  ||  K )
) )
2625rexlimdva 2625 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  /\  ( M  gcd  N
)  =  1 )  ->  ( E. x  e.  ZZ  ( x  x.  N )  =  K  ->  ( M  ||  K  ->  ( M  x.  N )  ||  K
) ) )
273, 26sylbid 150 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  /\  ( M  gcd  N
)  =  1 )  ->  ( N  ||  K  ->  ( M  ||  K  ->  ( M  x.  N )  ||  K
) ) )
2827com23 78 . 2  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  /\  ( M  gcd  N
)  =  1 )  ->  ( M  ||  K  ->  ( N  ||  K  ->  ( M  x.  N )  ||  K
) ) )
2928impd 254 1  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  /\  ( M  gcd  N
)  =  1 )  ->  ( ( M 
||  K  /\  N  ||  K )  ->  ( M  x.  N )  ||  K ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 981    = wceq 1373    e. wcel 2178   E.wrex 2487   class class class wbr 4059  (class class class)co 5967   CCcc 7958   1c1 7961    x. cmul 7965   ZZcz 9407    || cdvds 12213    gcd cgcd 12389
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-mulrcl 8059  ax-addcom 8060  ax-mulcom 8061  ax-addass 8062  ax-mulass 8063  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-1rid 8067  ax-0id 8068  ax-rnegex 8069  ax-precex 8070  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-apti 8075  ax-pre-ltadd 8076  ax-pre-mulgt0 8077  ax-pre-mulext 8078  ax-arch 8079  ax-caucvg 8080
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-po 4361  df-iso 4362  df-iord 4431  df-on 4433  df-ilim 4434  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-recs 6414  df-frec 6500  df-sup 7112  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-reap 8683  df-ap 8690  df-div 8781  df-inn 9072  df-2 9130  df-3 9131  df-4 9132  df-n0 9331  df-z 9408  df-uz 9684  df-q 9776  df-rp 9811  df-fz 10166  df-fzo 10300  df-fl 10450  df-mod 10505  df-seqfrec 10630  df-exp 10721  df-cj 11268  df-re 11269  df-im 11270  df-rsqrt 11424  df-abs 11425  df-dvds 12214  df-gcd 12390
This theorem is referenced by:  rpmulgcd2  12532  crth  12661
  Copyright terms: Public domain W3C validator