Theorem List for Intuitionistic Logic Explorer - 11701-11800 *Has distinct variable
group(s)
| Type | Label | Description |
| Statement |
| |
| Theorem | mertenslem2 11701* |
Lemma for mertensabs 11702. (Contributed by Mario Carneiro,
28-Apr-2014.)
|
                     
                                       

  
                                                      
 
        
                       
       |
| |
| Theorem | mertensabs 11702* |
Mertens' theorem. If    is an absolutely convergent series and
   is convergent, then
           
                (and
this latter series is convergent). This latter sum is commonly known as
the Cauchy product of the sequences. The proof follows the outline at
http://en.wikipedia.org/wiki/Cauchy_product#Proof_of_Mertens.27_theorem.
(Contributed by Mario Carneiro, 29-Apr-2014.) (Revised by Jim Kingdon,
8-Dec-2022.)
|
                     
                                       

  
    
         |
| |
| 4.9.10 Finite and infinite
products
|
| |
| 4.9.10.1 Product sequences
|
| |
| Theorem | prodf 11703* |
An infinite product of complex terms is a function from an upper set of
integers to .
(Contributed by Scott Fenton, 4-Dec-2017.)
|
       
                |
| |
| Theorem | clim2prod 11704* |
The limit of an infinite product with an initial segment added.
(Contributed by Scott Fenton, 18-Dec-2017.)
|
       
           
    
          |
| |
| Theorem | clim2divap 11705* |
The limit of an infinite product with an initial segment removed.
(Contributed by Scott Fenton, 20-Dec-2017.)
|
       
         
        #    
             |
| |
| Theorem | prod3fmul 11706* |
The product of two infinite products. (Contributed by Scott Fenton,
18-Dec-2017.) (Revised by Jim Kingdon, 22-Mar-2024.)
|
            
           
           
                     
                |
| |
| Theorem | prodf1 11707 |
The value of the partial products in a one-valued infinite product.
(Contributed by Scott Fenton, 5-Dec-2017.)
|
              
  |
| |
| Theorem | prodf1f 11708 |
A one-valued infinite product is equal to the constant one function.
(Contributed by Scott Fenton, 5-Dec-2017.)
|
                  |
| |
| Theorem | prodfclim1 11709 |
The constant one product converges to one. (Contributed by Scott
Fenton, 5-Dec-2017.)
|
              |
| |
| Theorem | prodfap0 11710* |
The product of finitely many terms apart from zero is apart from zero.
(Contributed by Scott Fenton, 14-Jan-2018.) (Revised by Jim Kingdon,
23-Mar-2024.)
|
            
           
    #         #   |
| |
| Theorem | prodfrecap 11711* |
The reciprocal of a finite product. (Contributed by Scott Fenton,
15-Jan-2018.) (Revised by Jim Kingdon, 24-Mar-2024.)
|
            
           
    #                          
           

         |
| |
| Theorem | prodfdivap 11712* |
The quotient of two products. (Contributed by Scott Fenton,
15-Jan-2018.) (Revised by Jim Kingdon, 24-Mar-2024.)
|
            
           
           
    #        
        
      
                      |
| |
| 4.9.10.2 Non-trivial convergence
|
| |
| Theorem | ntrivcvgap 11713* |
A non-trivially converging infinite product converges. (Contributed by
Scott Fenton, 18-Dec-2017.)
|
         #   
             
 |
| |
| Theorem | ntrivcvgap0 11714* |
A product that converges to a value apart from zero converges
non-trivially. (Contributed by Scott Fenton, 18-Dec-2017.)
|
         
  #
      #   
   |
| |
| 4.9.10.3 Complex products
|
| |
| Syntax | cprod 11715 |
Extend class notation to include complex products.
|
  |
| |
| Definition | df-proddc 11716* |
Define the product of a series with an index set of integers .
This definition takes most of the aspects of df-sumdc 11519 and adapts them
for multiplication instead of addition. However, we insist that in the
infinite case, there is a nonzero tail of the sequence. This ensures
that the convergence criteria match those of infinite sums.
(Contributed by Scott Fenton, 4-Dec-2017.) (Revised by Jim Kingdon,
21-Mar-2024.)
|

                DECID   
        #           
      
  
             
 

         ![]_ ]_](_urbrack.gif)            |
| |
| Theorem | prodeq1f 11717 |
Equality theorem for a product. (Contributed by Scott Fenton,
1-Dec-2017.)
|
     
   |
| |
| Theorem | prodeq1 11718* |
Equality theorem for a product. (Contributed by Scott Fenton,
1-Dec-2017.)
|
 
   |
| |
| Theorem | nfcprod1 11719* |
Bound-variable hypothesis builder for product. (Contributed by Scott
Fenton, 4-Dec-2017.)
|
      |
| |
| Theorem | nfcprod 11720* |
Bound-variable hypothesis builder for product: if is (effectively)
not free in
and , it is not free
in   .
(Contributed by Scott Fenton, 1-Dec-2017.)
|
        |
| |
| Theorem | prodeq2w 11721* |
Equality theorem for product, when the class expressions and
are equal everywhere. Proved using only Extensionality. (Contributed
by Scott Fenton, 4-Dec-2017.)
|
      |
| |
| Theorem | prodeq2 11722* |
Equality theorem for product. (Contributed by Scott Fenton,
4-Dec-2017.)
|
  
   |
| |
| Theorem | cbvprod 11723* |
Change bound variable in a product. (Contributed by Scott Fenton,
4-Dec-2017.)
|
          
  |
| |
| Theorem | cbvprodv 11724* |
Change bound variable in a product. (Contributed by Scott Fenton,
4-Dec-2017.)
|
     |
| |
| Theorem | cbvprodi 11725* |
Change bound variable in a product. (Contributed by Scott Fenton,
4-Dec-2017.)
|
    
    |
| |
| Theorem | prodeq1i 11726* |
Equality inference for product. (Contributed by Scott Fenton,
4-Dec-2017.)
|

  |
| |
| Theorem | prodeq2i 11727* |
Equality inference for product. (Contributed by Scott Fenton,
4-Dec-2017.)
|
     |
| |
| Theorem | prodeq12i 11728* |
Equality inference for product. (Contributed by Scott Fenton,
4-Dec-2017.)
|
  
  |
| |
| Theorem | prodeq1d 11729* |
Equality deduction for product. (Contributed by Scott Fenton,
4-Dec-2017.)
|
       |
| |
| Theorem | prodeq2d 11730* |
Equality deduction for product. Note that unlike prodeq2dv 11731,
may occur in . (Contributed by Scott Fenton, 4-Dec-2017.)
|
        |
| |
| Theorem | prodeq2dv 11731* |
Equality deduction for product. (Contributed by Scott Fenton,
4-Dec-2017.)
|
         |
| |
| Theorem | prodeq2sdv 11732* |
Equality deduction for product. (Contributed by Scott Fenton,
4-Dec-2017.)
|
       |
| |
| Theorem | 2cprodeq2dv 11733* |
Equality deduction for double product. (Contributed by Scott Fenton,
4-Dec-2017.)
|
      
    |
| |
| Theorem | prodeq12dv 11734* |
Equality deduction for product. (Contributed by Scott Fenton,
4-Dec-2017.)
|
      
    |
| |
| Theorem | prodeq12rdv 11735* |
Equality deduction for product. (Contributed by Scott Fenton,
4-Dec-2017.)
|
      
    |
| |
| Theorem | prodrbdclem 11736* |
Lemma for prodrbdc 11739. (Contributed by Scott Fenton, 4-Dec-2017.)
(Revised by Jim Kingdon, 4-Apr-2024.)
|
    
             DECID              
       
     |
| |
| Theorem | fproddccvg 11737* |
The sequence of partial products of a finite product converges to
the whole product. (Contributed by Scott Fenton, 4-Dec-2017.)
|
    
             DECID                          |
| |
| Theorem | prodrbdclem2 11738* |
Lemma for prodrbdc 11739. (Contributed by Scott Fenton,
4-Dec-2017.)
|
    
                            
DECID
       
DECID
       
     
   |
| |
| Theorem | prodrbdc 11739* |
Rebase the starting point of a product. (Contributed by Scott Fenton,
4-Dec-2017.)
|
    
                            
DECID
       
DECID
    
  
   |
| |
| Theorem | prodmodclem3 11740* |
Lemma for prodmodc 11743. (Contributed by Scott Fenton, 4-Dec-2017.)
(Revised by Jim Kingdon, 11-Apr-2024.)
|
    
         ♯       
 ![]_ ]_](_urbrack.gif) 
    
♯  
      ![]_ ]_](_urbrack.gif)     
                            
 
      |
| |
| Theorem | prodmodclem2a 11741* |
Lemma for prodmodc 11743. (Contributed by Scott Fenton, 4-Dec-2017.)
(Revised by Jim Kingdon, 11-Apr-2024.)
|
    
         ♯       
 ![]_ ]_](_urbrack.gif) 
    
♯  
      ![]_ ]_](_urbrack.gif)           DECID                           ♯         
        |
| |
| Theorem | prodmodclem2 11742* |
Lemma for prodmodc 11743. (Contributed by Scott Fenton, 4-Dec-2017.)
(Revised by Jim Kingdon, 13-Apr-2024.)
|
    
         ♯       
 ![]_ ]_](_urbrack.gif) 
    
           DECID            #   
   
    
                 
   |
| |
| Theorem | prodmodc 11743* |
A product has at most one limit. (Contributed by Scott Fenton,
4-Dec-2017.) (Modified by Jim Kingdon, 14-Apr-2024.)
|
    
         ♯       
 ![]_ ]_](_urbrack.gif) 
                  DECID   
        #   
   
             
 
        |
| |
| Theorem | zproddc 11744* |
Series product with index set a subset of the upper integers.
(Contributed by Scott Fenton, 5-Dec-2017.)
|
           #   
      DECID            
              |
| |
| Theorem | iprodap 11745* |
Series product with an upper integer index set (i.e. an infinite
product.) (Contributed by Scott Fenton, 5-Dec-2017.)
|
           #   
               
      |
| |
| Theorem | zprodap0 11746* |
Nonzero series product with index set a subset of the upper integers.
(Contributed by Scott Fenton, 6-Dec-2017.)
|
       #
    
   DECID     
            
      |
| |
| Theorem | iprodap0 11747* |
Nonzero series product with an upper integer index set (i.e. an
infinite product.) (Contributed by Scott Fenton, 6-Dec-2017.)
|
       #
    
  
           
  |
| |
| 4.9.10.4 Finite products
|
| |
| Theorem | fprodseq 11748* |
The value of a product over a nonempty finite set. (Contributed by
Scott Fenton, 6-Dec-2017.) (Revised by Jim Kingdon, 15-Jul-2024.)
|
      
                
    
            
             |
| |
| Theorem | fprodntrivap 11749* |
A non-triviality lemma for finite sequences. (Contributed by Scott
Fenton, 16-Dec-2017.)
|
            
    #  
       
   |
| |
| Theorem | prod0 11750 |
A product over the empty set is one. (Contributed by Scott Fenton,
5-Dec-2017.)
|

 |
| |
| Theorem | prod1dc 11751* |
Any product of one over a valid set is one. (Contributed by Scott
Fenton, 7-Dec-2017.) (Revised by Jim Kingdon, 5-Aug-2024.)
|
            DECID      |
| |
| Theorem | prodfct 11752* |
A lemma to facilitate conversions from the function form to the
class-variable form of a product. (Contributed by Scott Fenton,
7-Dec-2017.)
|
  
     
   |
| |
| Theorem | fprodf1o 11753* |
Re-index a finite product using a bijection. (Contributed by Scott
Fenton, 7-Dec-2017.)
|
  
             
  
       |
| |
| Theorem | prodssdc 11754* |
Change the index set to a subset in an upper integer product.
(Contributed by Scott Fenton, 11-Dec-2017.) (Revised by Jim Kingdon,
6-Aug-2024.)
|
                #                       DECID     
  
             DECID  
    |
| |
| Theorem | fprodssdc 11755* |
Change the index set to a subset in a finite sum. (Contributed by Scott
Fenton, 16-Dec-2017.)
|
        DECID        
      |
| |
| Theorem | fprodmul 11756* |
The product of two finite products. (Contributed by Scott Fenton,
14-Dec-2017.)
|
       
     
      |
| |
| Theorem | prodsnf 11757* |
A product of a singleton is the term. A version of prodsn 11758 using
bound-variable hypotheses instead of distinct variable conditions.
(Contributed by Glauco Siliprandi, 5-Apr-2020.)
|
  
          |
| |
| Theorem | prodsn 11758* |
A product of a singleton is the term. (Contributed by Scott Fenton,
14-Dec-2017.)
|
           |
| |
| Theorem | fprod1 11759* |
A finite product of only one term is the term itself. (Contributed by
Scott Fenton, 14-Dec-2017.)
|
             |
| |
| Theorem | climprod1 11760 |
The limit of a product over one. (Contributed by Scott Fenton,
15-Dec-2017.)
|
         
   
  |
| |
| Theorem | fprodsplitdc 11761* |
Split a finite product into two parts. New proofs should use
fprodsplit 11762 which is the same but with one fewer
hypothesis.
(Contributed by Scott Fenton, 16-Dec-2017.)
(New usage is discouraged.)
|
            DECID         
    |
| |
| Theorem | fprodsplit 11762* |
Split a finite product into two parts. (Contributed by Scott Fenton,
16-Dec-2017.)
|
                 
    |
| |
| Theorem | fprodm1 11763* |
Separate out the last term in a finite product. (Contributed by Scott
Fenton, 16-Dec-2017.)
|
            
 
       
            |
| |
| Theorem | fprod1p 11764* |
Separate out the first term in a finite product. (Contributed by Scott
Fenton, 24-Dec-2017.)
|
            
 
       
            |
| |
| Theorem | fprodp1 11765* |
Multiply in the last term in a finite product. (Contributed by Scott
Fenton, 24-Dec-2017.)
|
           
      
      
    
        |
| |
| Theorem | fprodm1s 11766* |
Separate out the last term in a finite product. (Contributed by Scott
Fenton, 27-Dec-2017.)
|
            
       
           ![]_ ]_](_urbrack.gif)    |
| |
| Theorem | fprodp1s 11767* |
Multiply in the last term in a finite product. (Contributed by Scott
Fenton, 27-Dec-2017.)
|
           
         
    
       
 ![]_ ]_](_urbrack.gif)    |
| |
| Theorem | prodsns 11768* |
A product of the singleton is the term. (Contributed by Scott Fenton,
25-Dec-2017.)
|
    ![]_ ]_](_urbrack.gif)
       ![]_ ]_](_urbrack.gif)   |
| |
| Theorem | fprodunsn 11769* |
Multiply in an additional term in a finite product. See also
fprodsplitsn 11798 which is the same but with a   hypothesis in
place of the distinct variable condition between and .
(Contributed by Jim Kingdon, 16-Aug-2024.)
|
                
           |
| |
| Theorem | fprodcl2lem 11770* |
Finite product closure lemma. (Contributed by Scott Fenton,
14-Dec-2017.) (Revised by Jim Kingdon, 17-Aug-2024.)
|
    
 
      
        |
| |
| Theorem | fprodcllem 11771* |
Finite product closure lemma. (Contributed by Scott Fenton,
14-Dec-2017.)
|
    
 
      
        |
| |
| Theorem | fprodcl 11772* |
Closure of a finite product of complex numbers. (Contributed by Scott
Fenton, 14-Dec-2017.)
|
       
  |
| |
| Theorem | fprodrecl 11773* |
Closure of a finite product of real numbers. (Contributed by Scott
Fenton, 14-Dec-2017.)
|
       
  |
| |
| Theorem | fprodzcl 11774* |
Closure of a finite product of integers. (Contributed by Scott
Fenton, 14-Dec-2017.)
|
       
  |
| |
| Theorem | fprodnncl 11775* |
Closure of a finite product of positive integers. (Contributed by
Scott Fenton, 14-Dec-2017.)
|
       
  |
| |
| Theorem | fprodrpcl 11776* |
Closure of a finite product of positive reals. (Contributed by Scott
Fenton, 14-Dec-2017.)
|
       
  |
| |
| Theorem | fprodnn0cl 11777* |
Closure of a finite product of nonnegative integers. (Contributed by
Scott Fenton, 14-Dec-2017.)
|
       
  |
| |
| Theorem | fprodcllemf 11778* |
Finite product closure lemma. A version of fprodcllem 11771 using
bound-variable hypotheses instead of distinct variable conditions.
(Contributed by Glauco Siliprandi, 5-Apr-2020.)
|
      
 
      
        |
| |
| Theorem | fprodreclf 11779* |
Closure of a finite product of real numbers. A version of fprodrecl 11773
using bound-variable hypotheses instead of distinct variable conditions.
(Contributed by Glauco Siliprandi, 5-Apr-2020.)
|
     
      |
| |
| Theorem | fprodfac 11780* |
Factorial using product notation. (Contributed by Scott Fenton,
15-Dec-2017.)
|
             |
| |
| Theorem | fprodabs 11781* |
The absolute value of a finite product. (Contributed by Scott Fenton,
25-Dec-2017.)
|
       
                         |
| |
| Theorem | fprodeq0 11782* |
Any finite product containing a zero term is itself zero. (Contributed
by Scott Fenton, 27-Dec-2017.)
|
       
            
     
  |
| |
| Theorem | fprodshft 11783* |
Shift the index of a finite product. (Contributed by Scott Fenton,
5-Jan-2018.)
|
            
           
      
     |
| |
| Theorem | fprodrev 11784* |
Reversal of a finite product. (Contributed by Scott Fenton,
5-Jan-2018.)
|
            
   
       
      
     |
| |
| Theorem | fprodconst 11785* |
The product of constant terms ( is not free in ).
(Contributed by Scott Fenton, 12-Jan-2018.)
|
   
   ♯     |
| |
| Theorem | fprodap0 11786* |
A finite product of nonzero terms is nonzero. (Contributed by Scott
Fenton, 15-Jan-2018.)
|
       
 #    #   |
| |
| Theorem | fprod2dlemstep 11787* |
Lemma for fprod2d 11788- induction step. (Contributed by Scott
Fenton,
30-Jan-2018.)
|
        
    
 
   
        
 
               

            |
| |
| Theorem | fprod2d 11788* |
Write a double product as a product over a two-dimensional region.
Compare fsum2d 11600. (Contributed by Scott Fenton,
30-Jan-2018.)
|
        
    
 
   

       |
| |
| Theorem | fprodxp 11789* |
Combine two products into a single product over the cartesian product.
(Contributed by Scott Fenton, 1-Feb-2018.)
|
           
 
   
      |
| |
| Theorem | fprodcnv 11790* |
Transform a product region using the converse operation. (Contributed
by Scott Fenton, 1-Feb-2018.)
|
        
               |
| |
| Theorem | fprodcom2fi 11791* |
Interchange order of multiplication. Note that    and
   are not necessarily constant expressions. (Contributed by
Scott Fenton, 1-Feb-2018.) (Proof shortened by JJ, 2-Aug-2021.)
|
     
                
 
   
    |
| |
| Theorem | fprodcom 11792* |
Interchange product order. (Contributed by Scott Fenton,
2-Feb-2018.)
|
     
  
        |
| |
| Theorem | fprod0diagfz 11793* |
Two ways to express "the product of     over the
triangular
region , ,
. Compare
fisum0diag 11606. (Contributed by Scott Fenton, 2-Feb-2018.)
|
      
                                          |
| |
| Theorem | fprodrec 11794* |
The finite product of reciprocals is the reciprocal of the product.
(Contributed by Jim Kingdon, 28-Aug-2024.)
|
       
 #     

    |
| |
| Theorem | fproddivap 11795* |
The quotient of two finite products. (Contributed by Scott Fenton,
15-Jan-2018.)
|
       
     #            |
| |
| Theorem | fproddivapf 11796* |
The quotient of two finite products. A version of fproddivap 11795 using
bound-variable hypotheses instead of distinct variable conditions.
(Contributed by Glauco Siliprandi, 5-Apr-2020.)
|
     
       
 #     
  
   |
| |
| Theorem | fprodsplitf 11797* |
Split a finite product into two parts. A version of fprodsplit 11762 using
bound-variable hypotheses instead of distinct variable conditions.
(Contributed by Glauco Siliprandi, 5-Apr-2020.)
|
                   
    |
| |
| Theorem | fprodsplitsn 11798* |
Separate out a term in a finite product. See also fprodunsn 11769 which is
the same but with a distinct variable condition in place of
  . (Contributed by Glauco Siliprandi,
5-Apr-2020.)
|
              
           
   |
| |
| Theorem | fprodsplit1f 11799* |
Separate out a term in a finite product. (Contributed by Glauco
Siliprandi, 5-Apr-2020.)
|
               
              |
| |
| Theorem | fprodclf 11800* |
Closure of a finite product of complex numbers. A version of fprodcl 11772
using bound-variable hypotheses instead of distinct variable conditions.
(Contributed by Glauco Siliprandi, 5-Apr-2020.)
|
     
      |