HomeHome Intuitionistic Logic Explorer
Theorem List (p. 118 of 156)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 11701-11800   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremcbvprod 11701* Change bound variable in a product. (Contributed by Scott Fenton, 4-Dec-2017.)
 |-  ( j  =  k 
 ->  B  =  C )   &    |-  F/_ k A   &    |-  F/_ j A   &    |-  F/_ k B   &    |-  F/_ j C   =>    |- 
 prod_ j  e.  A  B  =  prod_ k  e.  A  C
 
Theoremcbvprodv 11702* Change bound variable in a product. (Contributed by Scott Fenton, 4-Dec-2017.)
 |-  ( j  =  k 
 ->  B  =  C )   =>    |-  prod_
 j  e.  A  B  =  prod_ k  e.  A  C
 
Theoremcbvprodi 11703* Change bound variable in a product. (Contributed by Scott Fenton, 4-Dec-2017.)
 |-  F/_ k B   &    |-  F/_ j C   &    |-  (
 j  =  k  ->  B  =  C )   =>    |-  prod_ j  e.  A  B  =  prod_ k  e.  A  C
 
Theoremprodeq1i 11704* Equality inference for product. (Contributed by Scott Fenton, 4-Dec-2017.)
 |-  A  =  B   =>    |-  prod_ k  e.  A  C  =  prod_ k  e.  B  C
 
Theoremprodeq2i 11705* Equality inference for product. (Contributed by Scott Fenton, 4-Dec-2017.)
 |-  ( k  e.  A  ->  B  =  C )   =>    |-  prod_
 k  e.  A  B  =  prod_ k  e.  A  C
 
Theoremprodeq12i 11706* Equality inference for product. (Contributed by Scott Fenton, 4-Dec-2017.)
 |-  A  =  B   &    |-  (
 k  e.  A  ->  C  =  D )   =>    |-  prod_ k  e.  A  C  =  prod_ k  e.  B  D
 
Theoremprodeq1d 11707* Equality deduction for product. (Contributed by Scott Fenton, 4-Dec-2017.)
 |-  ( ph  ->  A  =  B )   =>    |-  ( ph  ->  prod_ k  e.  A  C  =  prod_ k  e.  B  C )
 
Theoremprodeq2d 11708* Equality deduction for product. Note that unlike prodeq2dv 11709, 
k may occur in  ph. (Contributed by Scott Fenton, 4-Dec-2017.)
 |-  ( ph  ->  A. k  e.  A  B  =  C )   =>    |-  ( ph  ->  prod_ k  e.  A  B  =  prod_ k  e.  A  C )
 
Theoremprodeq2dv 11709* Equality deduction for product. (Contributed by Scott Fenton, 4-Dec-2017.)
 |-  ( ( ph  /\  k  e.  A )  ->  B  =  C )   =>    |-  ( ph  ->  prod_ k  e.  A  B  =  prod_ k  e.  A  C )
 
Theoremprodeq2sdv 11710* Equality deduction for product. (Contributed by Scott Fenton, 4-Dec-2017.)
 |-  ( ph  ->  B  =  C )   =>    |-  ( ph  ->  prod_ k  e.  A  B  =  prod_ k  e.  A  C )
 
Theorem2cprodeq2dv 11711* Equality deduction for double product. (Contributed by Scott Fenton, 4-Dec-2017.)
 |-  ( ( ph  /\  j  e.  A  /\  k  e.  B )  ->  C  =  D )   =>    |-  ( ph  ->  prod_ j  e.  A  prod_ k  e.  B  C  =  prod_ j  e.  A  prod_ k  e.  B  D )
 
Theoremprodeq12dv 11712* Equality deduction for product. (Contributed by Scott Fenton, 4-Dec-2017.)
 |-  ( ph  ->  A  =  B )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  C  =  D )   =>    |-  ( ph  ->  prod_ k  e.  A  C  =  prod_ k  e.  B  D )
 
Theoremprodeq12rdv 11713* Equality deduction for product. (Contributed by Scott Fenton, 4-Dec-2017.)
 |-  ( ph  ->  A  =  B )   &    |-  ( ( ph  /\  k  e.  B ) 
 ->  C  =  D )   =>    |-  ( ph  ->  prod_ k  e.  A  C  =  prod_ k  e.  B  D )
 
Theoremprodrbdclem 11714* Lemma for prodrbdc 11717. (Contributed by Scott Fenton, 4-Dec-2017.) (Revised by Jim Kingdon, 4-Apr-2024.)
 |-  F  =  ( k  e.  ZZ  |->  if (
 k  e.  A ,  B ,  1 )
 )   &    |-  ( ( ph  /\  k  e.  A )  ->  B  e.  CC )   &    |-  ( ( ph  /\  k  e.  ( ZZ>= `  M ) )  -> DECID  k  e.  A )   &    |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )   =>    |-  ( ( ph  /\  A  C_  ( ZZ>= `  N )
 )  ->  (  seq M (  x.  ,  F )  |`  ( ZZ>= `  N ) )  =  seq N (  x.  ,  F ) )
 
Theoremfproddccvg 11715* The sequence of partial products of a finite product converges to the whole product. (Contributed by Scott Fenton, 4-Dec-2017.)
 |-  F  =  ( k  e.  ZZ  |->  if (
 k  e.  A ,  B ,  1 )
 )   &    |-  ( ( ph  /\  k  e.  A )  ->  B  e.  CC )   &    |-  ( ( ph  /\  k  e.  ( ZZ>= `  M ) )  -> DECID  k  e.  A )   &    |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )   &    |-  ( ph  ->  A 
 C_  ( M ... N ) )   =>    |-  ( ph  ->  seq M (  x.  ,  F )  ~~>  (  seq M (  x. 
 ,  F ) `  N ) )
 
Theoremprodrbdclem2 11716* Lemma for prodrbdc 11717. (Contributed by Scott Fenton, 4-Dec-2017.)
 |-  F  =  ( k  e.  ZZ  |->  if (
 k  e.  A ,  B ,  1 )
 )   &    |-  ( ( ph  /\  k  e.  A )  ->  B  e.  CC )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  N  e.  ZZ )   &    |-  ( ph  ->  A  C_  ( ZZ>= `  M )
 )   &    |-  ( ph  ->  A  C_  ( ZZ>= `  N )
 )   &    |-  ( ( ph  /\  k  e.  ( ZZ>= `  M )
 )  -> DECID  k  e.  A )   &    |-  ( ( ph  /\  k  e.  ( ZZ>= `  N )
 )  -> DECID  k  e.  A )   =>    |-  ( ( ph  /\  N  e.  ( ZZ>= `  M )
 )  ->  (  seq M (  x.  ,  F ) 
 ~~>  C  <->  seq N (  x. 
 ,  F )  ~~>  C )
 )
 
Theoremprodrbdc 11717* Rebase the starting point of a product. (Contributed by Scott Fenton, 4-Dec-2017.)
 |-  F  =  ( k  e.  ZZ  |->  if (
 k  e.  A ,  B ,  1 )
 )   &    |-  ( ( ph  /\  k  e.  A )  ->  B  e.  CC )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  N  e.  ZZ )   &    |-  ( ph  ->  A  C_  ( ZZ>= `  M )
 )   &    |-  ( ph  ->  A  C_  ( ZZ>= `  N )
 )   &    |-  ( ( ph  /\  k  e.  ( ZZ>= `  M )
 )  -> DECID  k  e.  A )   &    |-  ( ( ph  /\  k  e.  ( ZZ>= `  N )
 )  -> DECID  k  e.  A )   =>    |-  ( ph  ->  (  seq M (  x.  ,  F )  ~~>  C  <->  seq N (  x. 
 ,  F )  ~~>  C )
 )
 
Theoremprodmodclem3 11718* Lemma for prodmodc 11721. (Contributed by Scott Fenton, 4-Dec-2017.) (Revised by Jim Kingdon, 11-Apr-2024.)
 |-  F  =  ( k  e.  ZZ  |->  if (
 k  e.  A ,  B ,  1 )
 )   &    |-  ( ( ph  /\  k  e.  A )  ->  B  e.  CC )   &    |-  G  =  ( j  e.  NN  |->  if ( j  <_  ( `  A ) ,  [_ ( f `  j
 )  /  k ]_ B ,  1 )
 )   &    |-  H  =  ( j  e.  NN  |->  if (
 j  <_  ( `  A ) ,  [_ ( K `
  j )  /  k ]_ B ,  1 ) )   &    |-  ( ph  ->  ( M  e.  NN  /\  N  e.  NN )
 )   &    |-  ( ph  ->  f : ( 1 ...
 M ) -1-1-onto-> A )   &    |-  ( ph  ->  K : ( 1 ...
 N ) -1-1-onto-> A )   =>    |-  ( ph  ->  (  seq 1 (  x.  ,  G ) `  M )  =  (  seq 1 (  x.  ,  H ) `  N ) )
 
Theoremprodmodclem2a 11719* Lemma for prodmodc 11721. (Contributed by Scott Fenton, 4-Dec-2017.) (Revised by Jim Kingdon, 11-Apr-2024.)
 |-  F  =  ( k  e.  ZZ  |->  if (
 k  e.  A ,  B ,  1 )
 )   &    |-  ( ( ph  /\  k  e.  A )  ->  B  e.  CC )   &    |-  G  =  ( j  e.  NN  |->  if ( j  <_  ( `  A ) ,  [_ ( f `  j
 )  /  k ]_ B ,  1 )
 )   &    |-  H  =  ( j  e.  NN  |->  if (
 j  <_  ( `  A ) ,  [_ ( K `
  j )  /  k ]_ B ,  1 ) )   &    |-  ( ( ph  /\  k  e.  ( ZZ>= `  M ) )  -> DECID  k  e.  A )   &    |-  ( ph  ->  N  e.  NN )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  A  C_  ( ZZ>= `  M )
 )   &    |-  ( ph  ->  f : ( 1 ...
 N ) -1-1-onto-> A )   &    |-  ( ph  ->  K 
 Isom  <  ,  <  (
 ( 1 ... ( `  A ) ) ,  A ) )   =>    |-  ( ph  ->  seq
 M (  x.  ,  F )  ~~>  (  seq 1
 (  x.  ,  G ) `  N ) )
 
Theoremprodmodclem2 11720* Lemma for prodmodc 11721. (Contributed by Scott Fenton, 4-Dec-2017.) (Revised by Jim Kingdon, 13-Apr-2024.)
 |-  F  =  ( k  e.  ZZ  |->  if (
 k  e.  A ,  B ,  1 )
 )   &    |-  ( ( ph  /\  k  e.  A )  ->  B  e.  CC )   &    |-  G  =  ( j  e.  NN  |->  if ( j  <_  ( `  A ) ,  [_ ( f `  j
 )  /  k ]_ B ,  1 )
 )   =>    |-  ( ( ph  /\  E. m  e.  ZZ  (
 ( A  C_  ( ZZ>=
 `  m )  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A ) 
 /\  ( E. n  e.  ( ZZ>= `  m ) E. y ( y #  0 
 /\  seq n (  x. 
 ,  F )  ~~>  y )  /\  seq m (  x. 
 ,  F )  ~~>  x )
 ) )  ->  ( E. m  e.  NN  E. f ( f : ( 1 ... m )
 -1-1-onto-> A  /\  z  =  ( 
 seq 1 (  x. 
 ,  G ) `  m ) )  ->  x  =  z )
 )
 
Theoremprodmodc 11721* A product has at most one limit. (Contributed by Scott Fenton, 4-Dec-2017.) (Modified by Jim Kingdon, 14-Apr-2024.)
 |-  F  =  ( k  e.  ZZ  |->  if (
 k  e.  A ,  B ,  1 )
 )   &    |-  ( ( ph  /\  k  e.  A )  ->  B  e.  CC )   &    |-  G  =  ( j  e.  NN  |->  if ( j  <_  ( `  A ) ,  [_ ( f `  j
 )  /  k ]_ B ,  1 )
 )   =>    |-  ( ph  ->  E* x ( E. m  e.  ZZ  ( ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  ( ZZ>=
 `  m )DECID  j  e.  A )  /\  ( E. n  e.  ( ZZ>=
 `  m ) E. y ( y #  0 
 /\  seq n (  x. 
 ,  F )  ~~>  y )  /\  seq m (  x. 
 ,  F )  ~~>  x )
 )  \/  E. m  e.  NN  E. f ( f : ( 1
 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  ,  G ) `  m ) ) ) )
 
Theoremzproddc 11722* Series product with index set a subset of the upper integers. (Contributed by Scott Fenton, 5-Dec-2017.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  E. n  e.  Z  E. y ( y #  0 
 /\  seq n (  x. 
 ,  F )  ~~>  y )
 )   &    |-  ( ph  ->  A  C_  Z )   &    |-  ( ph  ->  A. j  e.  Z DECID  j  e.  A )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  ( F `  k
 )  =  if (
 k  e.  A ,  B ,  1 )
 )   &    |-  ( ( ph  /\  k  e.  A )  ->  B  e.  CC )   =>    |-  ( ph  ->  prod_ k  e.  A  B  =  (  ~~>  ` 
 seq M (  x. 
 ,  F ) ) )
 
Theoremiprodap 11723* Series product with an upper integer index set (i.e. an infinite product.) (Contributed by Scott Fenton, 5-Dec-2017.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  E. n  e.  Z  E. y ( y #  0 
 /\  seq n (  x. 
 ,  F )  ~~>  y )
 )   &    |-  ( ( ph  /\  k  e.  Z )  ->  ( F `  k )  =  B )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  B  e.  CC )   =>    |-  ( ph  ->  prod_ k  e.  Z  B  =  (  ~~>  `  seq M (  x.  ,  F ) ) )
 
Theoremzprodap0 11724* Nonzero series product with index set a subset of the upper integers. (Contributed by Scott Fenton, 6-Dec-2017.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  X #  0 )   &    |-  ( ph  ->  seq M (  x. 
 ,  F )  ~~>  X )   &    |-  ( ph  ->  A. j  e.  Z DECID  j  e.  A )   &    |-  ( ph  ->  A 
 C_  Z )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  ( F `  k )  =  if ( k  e.  A ,  B , 
 1 ) )   &    |-  (
 ( ph  /\  k  e.  A )  ->  B  e.  CC )   =>    |-  ( ph  ->  prod_ k  e.  A  B  =  X )
 
Theoremiprodap0 11725* Nonzero series product with an upper integer index set (i.e. an infinite product.) (Contributed by Scott Fenton, 6-Dec-2017.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  X #  0 )   &    |-  ( ph  ->  seq M (  x. 
 ,  F )  ~~>  X )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  ( F `  k )  =  B )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  B  e.  CC )   =>    |-  ( ph  ->  prod_ k  e.  Z  B  =  X )
 
4.9.10.4  Finite products
 
Theoremfprodseq 11726* The value of a product over a nonempty finite set. (Contributed by Scott Fenton, 6-Dec-2017.) (Revised by Jim Kingdon, 15-Jul-2024.)
 |-  ( k  =  ( F `  n ) 
 ->  B  =  C )   &    |-  ( ph  ->  M  e.  NN )   &    |-  ( ph  ->  F : ( 1 ...
 M ) -1-1-onto-> A )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  B  e.  CC )   &    |-  (
 ( ph  /\  n  e.  ( 1 ... M ) )  ->  ( G `
  n )  =  C )   =>    |-  ( ph  ->  prod_ k  e.  A  B  =  ( 
 seq 1 (  x. 
 ,  ( n  e. 
 NN  |->  if ( n  <_  M ,  ( G `  n ) ,  1 ) ) ) `  M ) )
 
Theoremfprodntrivap 11727* A non-triviality lemma for finite sequences. (Contributed by Scott Fenton, 16-Dec-2017.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  N  e.  Z )   &    |-  ( ph  ->  A  C_  ( M ... N ) )   =>    |-  ( ph  ->  E. n  e.  Z  E. y ( y #  0  /\  seq n (  x.  ,  (
 k  e.  Z  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )
 )
 
Theoremprod0 11728 A product over the empty set is one. (Contributed by Scott Fenton, 5-Dec-2017.)
 |- 
 prod_ k  e.  (/)  A  =  1
 
Theoremprod1dc 11729* Any product of one over a valid set is one. (Contributed by Scott Fenton, 7-Dec-2017.) (Revised by Jim Kingdon, 5-Aug-2024.)
 |-  ( ( ( M  e.  ZZ  /\  A  C_  ( ZZ>= `  M )  /\  A. j  e.  ( ZZ>=
 `  M )DECID  j  e.  A )  \/  A  e.  Fin )  ->  prod_ k  e.  A  1  =  1 )
 
Theoremprodfct 11730* A lemma to facilitate conversions from the function form to the class-variable form of a product. (Contributed by Scott Fenton, 7-Dec-2017.)
 |-  ( A. k  e.  A  B  e.  CC  -> 
 prod_ j  e.  A  ( ( k  e.  A  |->  B ) `  j )  =  prod_ k  e.  A  B )
 
Theoremfprodf1o 11731* Re-index a finite product using a bijection. (Contributed by Scott Fenton, 7-Dec-2017.)
 |-  ( k  =  G  ->  B  =  D )   &    |-  ( ph  ->  C  e.  Fin )   &    |-  ( ph  ->  F : C -1-1-onto-> A )   &    |-  ( ( ph  /\  n  e.  C ) 
 ->  ( F `  n )  =  G )   &    |-  (
 ( ph  /\  k  e.  A )  ->  B  e.  CC )   =>    |-  ( ph  ->  prod_ k  e.  A  B  =  prod_ n  e.  C  D )
 
Theoremprodssdc 11732* Change the index set to a subset in an upper integer product. (Contributed by Scott Fenton, 11-Dec-2017.) (Revised by Jim Kingdon, 6-Aug-2024.)
 |-  ( ph  ->  A  C_  B )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  C  e.  CC )   &    |-  ( ph  ->  E. n  e.  ( ZZ>=
 `  M ) E. y ( y #  0 
 /\  seq n (  x. 
 ,  ( k  e.  ( ZZ>= `  M )  |->  if ( k  e.  B ,  C , 
 1 ) ) )  ~~>  y ) )   &    |-  ( ph  ->  A. j  e.  ( ZZ>=
 `  M )DECID  j  e.  A )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  (
 ( ph  /\  k  e.  ( B  \  A ) )  ->  C  =  1 )   &    |-  ( ph  ->  B 
 C_  ( ZZ>= `  M ) )   &    |-  ( ph  ->  A. j  e.  ( ZZ>= `  M )DECID  j  e.  B )   =>    |-  ( ph  ->  prod_ k  e.  A  C  =  prod_ k  e.  B  C )
 
Theoremfprodssdc 11733* Change the index set to a subset in a finite sum. (Contributed by Scott Fenton, 16-Dec-2017.)
 |-  ( ph  ->  A  C_  B )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  C  e.  CC )   &    |-  ( ph  ->  A. j  e.  B DECID  j  e.  A )   &    |-  ( ( ph  /\  k  e.  ( B 
 \  A ) ) 
 ->  C  =  1 )   &    |-  ( ph  ->  B  e.  Fin )   =>    |-  ( ph  ->  prod_ k  e.  A  C  =  prod_ k  e.  B  C )
 
Theoremfprodmul 11734* The product of two finite products. (Contributed by Scott Fenton, 14-Dec-2017.)
 |-  ( ph  ->  A  e.  Fin )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  B  e.  CC )   &    |-  (
 ( ph  /\  k  e.  A )  ->  C  e.  CC )   =>    |-  ( ph  ->  prod_ k  e.  A  ( B  x.  C )  =  ( prod_ k  e.  A  B  x.  prod_ k  e.  A  C ) )
 
Theoremprodsnf 11735* A product of a singleton is the term. A version of prodsn 11736 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
 |-  F/_ k B   &    |-  ( k  =  M  ->  A  =  B )   =>    |-  ( ( M  e.  V  /\  B  e.  CC )  ->  prod_ k  e.  { M } A  =  B )
 
Theoremprodsn 11736* A product of a singleton is the term. (Contributed by Scott Fenton, 14-Dec-2017.)
 |-  ( k  =  M  ->  A  =  B )   =>    |-  ( ( M  e.  V  /\  B  e.  CC )  ->  prod_ k  e.  { M } A  =  B )
 
Theoremfprod1 11737* A finite product of only one term is the term itself. (Contributed by Scott Fenton, 14-Dec-2017.)
 |-  ( k  =  M  ->  A  =  B )   =>    |-  ( ( M  e.  ZZ  /\  B  e.  CC )  ->  prod_ k  e.  ( M ... M ) A  =  B )
 
Theoremclimprod1 11738 The limit of a product over one. (Contributed by Scott Fenton, 15-Dec-2017.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   =>    |-  ( ph  ->  seq
 M (  x.  ,  ( Z  X.  { 1 } ) )  ~~>  1 )
 
Theoremfprodsplitdc 11739* Split a finite product into two parts. New proofs should use fprodsplit 11740 which is the same but with one fewer hypothesis. (Contributed by Scott Fenton, 16-Dec-2017.) (New usage is discouraged.)
 |-  ( ph  ->  ( A  i^i  B )  =  (/) )   &    |-  ( ph  ->  U  =  ( A  u.  B ) )   &    |-  ( ph  ->  U  e.  Fin )   &    |-  ( ph  ->  A. j  e.  U DECID  j  e.  A )   &    |-  ( ( ph  /\  k  e.  U )  ->  C  e.  CC )   =>    |-  ( ph  ->  prod_ k  e.  U  C  =  (
 prod_ k  e.  A  C  x.  prod_ k  e.  B  C ) )
 
Theoremfprodsplit 11740* Split a finite product into two parts. (Contributed by Scott Fenton, 16-Dec-2017.)
 |-  ( ph  ->  ( A  i^i  B )  =  (/) )   &    |-  ( ph  ->  U  =  ( A  u.  B ) )   &    |-  ( ph  ->  U  e.  Fin )   &    |-  ( ( ph  /\  k  e.  U )  ->  C  e.  CC )   =>    |-  ( ph  ->  prod_ k  e.  U  C  =  (
 prod_ k  e.  A  C  x.  prod_ k  e.  B  C ) )
 
Theoremfprodm1 11741* Separate out the last term in a finite product. (Contributed by Scott Fenton, 16-Dec-2017.)
 |-  ( ph  ->  N  e.  ( ZZ>= `  M )
 )   &    |-  ( ( ph  /\  k  e.  ( M ... N ) )  ->  A  e.  CC )   &    |-  ( k  =  N  ->  A  =  B )   =>    |-  ( ph  ->  prod_ k  e.  ( M ... N ) A  =  ( prod_ k  e.  ( M
 ... ( N  -  1 ) ) A  x.  B ) )
 
Theoremfprod1p 11742* Separate out the first term in a finite product. (Contributed by Scott Fenton, 24-Dec-2017.)
 |-  ( ph  ->  N  e.  ( ZZ>= `  M )
 )   &    |-  ( ( ph  /\  k  e.  ( M ... N ) )  ->  A  e.  CC )   &    |-  ( k  =  M  ->  A  =  B )   =>    |-  ( ph  ->  prod_ k  e.  ( M ... N ) A  =  ( B  x.  prod_ k  e.  (
 ( M  +  1 ) ... N ) A ) )
 
Theoremfprodp1 11743* Multiply in the last term in a finite product. (Contributed by Scott Fenton, 24-Dec-2017.)
 |-  ( ph  ->  N  e.  ( ZZ>= `  M )
 )   &    |-  ( ( ph  /\  k  e.  ( M ... ( N  +  1 )
 ) )  ->  A  e.  CC )   &    |-  ( k  =  ( N  +  1 )  ->  A  =  B )   =>    |-  ( ph  ->  prod_ k  e.  ( M ... ( N  +  1 )
 ) A  =  (
 prod_ k  e.  ( M ... N ) A  x.  B ) )
 
Theoremfprodm1s 11744* Separate out the last term in a finite product. (Contributed by Scott Fenton, 27-Dec-2017.)
 |-  ( ph  ->  N  e.  ( ZZ>= `  M )
 )   &    |-  ( ( ph  /\  k  e.  ( M ... N ) )  ->  A  e.  CC )   =>    |-  ( ph  ->  prod_ k  e.  ( M ... N ) A  =  ( prod_ k  e.  ( M
 ... ( N  -  1 ) ) A  x.  [_ N  /  k ]_ A ) )
 
Theoremfprodp1s 11745* Multiply in the last term in a finite product. (Contributed by Scott Fenton, 27-Dec-2017.)
 |-  ( ph  ->  N  e.  ( ZZ>= `  M )
 )   &    |-  ( ( ph  /\  k  e.  ( M ... ( N  +  1 )
 ) )  ->  A  e.  CC )   =>    |-  ( ph  ->  prod_ k  e.  ( M ... ( N  +  1 )
 ) A  =  (
 prod_ k  e.  ( M ... N ) A  x.  [_ ( N  +  1 )  /  k ]_ A ) )
 
Theoremprodsns 11746* A product of the singleton is the term. (Contributed by Scott Fenton, 25-Dec-2017.)
 |-  ( ( M  e.  V  /\  [_ M  /  k ]_ A  e.  CC )  ->  prod_ k  e.  { M } A  =  [_ M  /  k ]_ A )
 
Theoremfprodunsn 11747* Multiply in an additional term in a finite product. See also fprodsplitsn 11776 which is the same but with a  F/ k
ph hypothesis in place of the distinct variable condition between  ph and  k. (Contributed by Jim Kingdon, 16-Aug-2024.)
 |-  F/_ k D   &    |-  ( ph  ->  A  e.  Fin )   &    |-  ( ph  ->  B  e.  V )   &    |-  ( ph  ->  -.  B  e.  A )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  C  e.  CC )   &    |-  ( ph  ->  D  e.  CC )   &    |-  ( k  =  B  ->  C  =  D )   =>    |-  ( ph  ->  prod_ k  e.  ( A  u.  { B } ) C  =  ( prod_ k  e.  A  C  x.  D ) )
 
Theoremfprodcl2lem 11748* Finite product closure lemma. (Contributed by Scott Fenton, 14-Dec-2017.) (Revised by Jim Kingdon, 17-Aug-2024.)
 |-  ( ph  ->  S  C_ 
 CC )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S ) )  ->  ( x  x.  y )  e.  S )   &    |-  ( ph  ->  A  e.  Fin )   &    |-  (
 ( ph  /\  k  e.  A )  ->  B  e.  S )   &    |-  ( ph  ->  A  =/=  (/) )   =>    |-  ( ph  ->  prod_ k  e.  A  B  e.  S )
 
Theoremfprodcllem 11749* Finite product closure lemma. (Contributed by Scott Fenton, 14-Dec-2017.)
 |-  ( ph  ->  S  C_ 
 CC )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S ) )  ->  ( x  x.  y )  e.  S )   &    |-  ( ph  ->  A  e.  Fin )   &    |-  (
 ( ph  /\  k  e.  A )  ->  B  e.  S )   &    |-  ( ph  ->  1  e.  S )   =>    |-  ( ph  ->  prod_
 k  e.  A  B  e.  S )
 
Theoremfprodcl 11750* Closure of a finite product of complex numbers. (Contributed by Scott Fenton, 14-Dec-2017.)
 |-  ( ph  ->  A  e.  Fin )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  B  e.  CC )   =>    |-  ( ph  ->  prod_ k  e.  A  B  e.  CC )
 
Theoremfprodrecl 11751* Closure of a finite product of real numbers. (Contributed by Scott Fenton, 14-Dec-2017.)
 |-  ( ph  ->  A  e.  Fin )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  B  e.  RR )   =>    |-  ( ph  ->  prod_ k  e.  A  B  e.  RR )
 
Theoremfprodzcl 11752* Closure of a finite product of integers. (Contributed by Scott Fenton, 14-Dec-2017.)
 |-  ( ph  ->  A  e.  Fin )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  B  e.  ZZ )   =>    |-  ( ph  ->  prod_ k  e.  A  B  e.  ZZ )
 
Theoremfprodnncl 11753* Closure of a finite product of positive integers. (Contributed by Scott Fenton, 14-Dec-2017.)
 |-  ( ph  ->  A  e.  Fin )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  B  e.  NN )   =>    |-  ( ph  ->  prod_ k  e.  A  B  e.  NN )
 
Theoremfprodrpcl 11754* Closure of a finite product of positive reals. (Contributed by Scott Fenton, 14-Dec-2017.)
 |-  ( ph  ->  A  e.  Fin )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  B  e.  RR+ )   =>    |-  ( ph  ->  prod_ k  e.  A  B  e.  RR+ )
 
Theoremfprodnn0cl 11755* Closure of a finite product of nonnegative integers. (Contributed by Scott Fenton, 14-Dec-2017.)
 |-  ( ph  ->  A  e.  Fin )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  B  e.  NN0 )   =>    |-  ( ph  ->  prod_ k  e.  A  B  e.  NN0 )
 
Theoremfprodcllemf 11756* Finite product closure lemma. A version of fprodcllem 11749 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
 |- 
 F/ k ph   &    |-  ( ph  ->  S 
 C_  CC )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S ) )  ->  ( x  x.  y )  e.  S )   &    |-  ( ph  ->  A  e.  Fin )   &    |-  (
 ( ph  /\  k  e.  A )  ->  B  e.  S )   &    |-  ( ph  ->  1  e.  S )   =>    |-  ( ph  ->  prod_
 k  e.  A  B  e.  S )
 
Theoremfprodreclf 11757* Closure of a finite product of real numbers. A version of fprodrecl 11751 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
 |- 
 F/ k ph   &    |-  ( ph  ->  A  e.  Fin )   &    |-  (
 ( ph  /\  k  e.  A )  ->  B  e.  RR )   =>    |-  ( ph  ->  prod_ k  e.  A  B  e.  RR )
 
Theoremfprodfac 11758* Factorial using product notation. (Contributed by Scott Fenton, 15-Dec-2017.)
 |-  ( A  e.  NN0  ->  ( ! `  A )  =  prod_ k  e.  (
 1 ... A ) k )
 
Theoremfprodabs 11759* The absolute value of a finite product. (Contributed by Scott Fenton, 25-Dec-2017.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  N  e.  Z )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  A  e.  CC )   =>    |-  ( ph  ->  ( abs `  prod_ k  e.  ( M ... N ) A )  =  prod_ k  e.  ( M ... N ) ( abs `  A ) )
 
Theoremfprodeq0 11760* Any finite product containing a zero term is itself zero. (Contributed by Scott Fenton, 27-Dec-2017.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  N  e.  Z )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  A  e.  CC )   &    |-  ( ( ph  /\  k  =  N ) 
 ->  A  =  0 )   =>    |-  ( ( ph  /\  K  e.  ( ZZ>= `  N )
 )  ->  prod_ k  e.  ( M ... K ) A  =  0
 )
 
Theoremfprodshft 11761* Shift the index of a finite product. (Contributed by Scott Fenton, 5-Jan-2018.)
 |-  ( ph  ->  K  e.  ZZ )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  N  e.  ZZ )   &    |-  ( ( ph  /\  j  e.  ( M ... N ) )  ->  A  e.  CC )   &    |-  ( j  =  ( k  -  K )  ->  A  =  B )   =>    |-  ( ph  ->  prod_ j  e.  ( M ... N ) A  =  prod_ k  e.  ( ( M  +  K ) ... ( N  +  K ) ) B )
 
Theoremfprodrev 11762* Reversal of a finite product. (Contributed by Scott Fenton, 5-Jan-2018.)
 |-  ( ph  ->  K  e.  ZZ )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  N  e.  ZZ )   &    |-  ( ( ph  /\  j  e.  ( M ... N ) )  ->  A  e.  CC )   &    |-  ( j  =  ( K  -  k
 )  ->  A  =  B )   =>    |-  ( ph  ->  prod_ j  e.  ( M ... N ) A  =  prod_ k  e.  ( ( K  -  N ) ... ( K  -  M ) ) B )
 
Theoremfprodconst 11763* The product of constant terms ( k is not free in  B). (Contributed by Scott Fenton, 12-Jan-2018.)
 |-  ( ( A  e.  Fin  /\  B  e.  CC )  -> 
 prod_ k  e.  A  B  =  ( B ^ ( `  A )
 ) )
 
Theoremfprodap0 11764* A finite product of nonzero terms is nonzero. (Contributed by Scott Fenton, 15-Jan-2018.)
 |-  ( ph  ->  A  e.  Fin )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  B  e.  CC )   &    |-  (
 ( ph  /\  k  e.  A )  ->  B #  0 )   =>    |-  ( ph  ->  prod_ k  e.  A  B #  0 )
 
Theoremfprod2dlemstep 11765* Lemma for fprod2d 11766- induction step. (Contributed by Scott Fenton, 30-Jan-2018.)
 |-  ( z  =  <. j ,  k >.  ->  D  =  C )   &    |-  ( ph  ->  A  e.  Fin )   &    |-  (
 ( ph  /\  j  e.  A )  ->  B  e.  Fin )   &    |-  ( ( ph  /\  ( j  e.  A  /\  k  e.  B ) )  ->  C  e.  CC )   &    |-  ( ph  ->  -.  y  e.  x )   &    |-  ( ph  ->  ( x  u.  { y } )  C_  A )   &    |-  ( ph  ->  x  e.  Fin )   &    |-  ( ps 
 <-> 
 prod_ j  e.  x  prod_ k  e.  B  C  =  prod_ z  e.  U_  j  e.  x  ( { j }  X.  B ) D )   =>    |-  ( ( ph  /\  ps )  ->  prod_ j  e.  ( x  u.  { y }
 ) prod_ k  e.  B  C  =  prod_ z  e.  U_  j  e.  ( x  u.  { y }
 ) ( { j }  X.  B ) D )
 
Theoremfprod2d 11766* Write a double product as a product over a two-dimensional region. Compare fsum2d 11578. (Contributed by Scott Fenton, 30-Jan-2018.)
 |-  ( z  =  <. j ,  k >.  ->  D  =  C )   &    |-  ( ph  ->  A  e.  Fin )   &    |-  (
 ( ph  /\  j  e.  A )  ->  B  e.  Fin )   &    |-  ( ( ph  /\  ( j  e.  A  /\  k  e.  B ) )  ->  C  e.  CC )   =>    |-  ( ph  ->  prod_ j  e.  A  prod_ k  e.  B  C  =  prod_ z  e.  U_  j  e.  A  ( { j }  X.  B ) D )
 
Theoremfprodxp 11767* Combine two products into a single product over the cartesian product. (Contributed by Scott Fenton, 1-Feb-2018.)
 |-  ( z  =  <. j ,  k >.  ->  D  =  C )   &    |-  ( ph  ->  A  e.  Fin )   &    |-  ( ph  ->  B  e.  Fin )   &    |-  ( ( ph  /\  (
 j  e.  A  /\  k  e.  B )
 )  ->  C  e.  CC )   =>    |-  ( ph  ->  prod_ j  e.  A  prod_ k  e.  B  C  =  prod_ z  e.  ( A  X.  B ) D )
 
Theoremfprodcnv 11768* Transform a product region using the converse operation. (Contributed by Scott Fenton, 1-Feb-2018.)
 |-  ( x  =  <. j ,  k >.  ->  B  =  D )   &    |-  ( y  = 
 <. k ,  j >.  ->  C  =  D )   &    |-  ( ph  ->  A  e.  Fin )   &    |-  ( ph  ->  Rel  A )   &    |-  ( ( ph  /\  x  e.  A )  ->  B  e.  CC )   =>    |-  ( ph  ->  prod_ x  e.  A  B  =  prod_ y  e.  `'  A C )
 
Theoremfprodcom2fi 11769* Interchange order of multiplication. Note that  B ( j ) and  D ( k ) are not necessarily constant expressions. (Contributed by Scott Fenton, 1-Feb-2018.) (Proof shortened by JJ, 2-Aug-2021.)
 |-  ( ph  ->  A  e.  Fin )   &    |-  ( ph  ->  C  e.  Fin )   &    |-  (
 ( ph  /\  j  e.  A )  ->  B  e.  Fin )   &    |-  ( ( ph  /\  k  e.  C ) 
 ->  D  e.  Fin )   &    |-  ( ph  ->  ( ( j  e.  A  /\  k  e.  B )  <->  ( k  e.  C  /\  j  e.  D ) ) )   &    |-  ( ( ph  /\  (
 j  e.  A  /\  k  e.  B )
 )  ->  E  e.  CC )   =>    |-  ( ph  ->  prod_ j  e.  A  prod_ k  e.  B  E  =  prod_ k  e.  C  prod_ j  e.  D  E )
 
Theoremfprodcom 11770* Interchange product order. (Contributed by Scott Fenton, 2-Feb-2018.)
 |-  ( ph  ->  A  e.  Fin )   &    |-  ( ph  ->  B  e.  Fin )   &    |-  (
 ( ph  /\  ( j  e.  A  /\  k  e.  B ) )  ->  C  e.  CC )   =>    |-  ( ph  ->  prod_ j  e.  A  prod_ k  e.  B  C  =  prod_ k  e.  B  prod_ j  e.  A  C )
 
Theoremfprod0diagfz 11771* Two ways to express "the product of  A ( j ,  k ) over the triangular region  M  <_  j,  M  <_  k,  j  +  k  <_  N. Compare fisum0diag 11584. (Contributed by Scott Fenton, 2-Feb-2018.)
 |-  ( ( ph  /\  (
 j  e.  ( 0
 ... N )  /\  k  e.  ( 0 ... ( N  -  j
 ) ) ) ) 
 ->  A  e.  CC )   &    |-  ( ph  ->  N  e.  ZZ )   =>    |-  ( ph  ->  prod_ j  e.  ( 0 ... N ) prod_ k  e.  (
 0 ... ( N  -  j ) ) A  =  prod_ k  e.  (
 0 ... N ) prod_
 j  e.  ( 0
 ... ( N  -  k ) ) A )
 
Theoremfprodrec 11772* The finite product of reciprocals is the reciprocal of the product. (Contributed by Jim Kingdon, 28-Aug-2024.)
 |-  ( ph  ->  A  e.  Fin )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  B  e.  CC )   &    |-  (
 ( ph  /\  k  e.  A )  ->  B #  0 )   =>    |-  ( ph  ->  prod_ k  e.  A  ( 1  /  B )  =  (
 1  /  prod_ k  e.  A  B ) )
 
Theoremfproddivap 11773* The quotient of two finite products. (Contributed by Scott Fenton, 15-Jan-2018.)
 |-  ( ph  ->  A  e.  Fin )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  B  e.  CC )   &    |-  (
 ( ph  /\  k  e.  A )  ->  C  e.  CC )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  C #  0 )   =>    |-  ( ph  ->  prod_
 k  e.  A  ( B  /  C )  =  ( prod_ k  e.  A  B  /  prod_ k  e.  A  C ) )
 
Theoremfproddivapf 11774* The quotient of two finite products. A version of fproddivap 11773 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
 |- 
 F/ k ph   &    |-  ( ph  ->  A  e.  Fin )   &    |-  (
 ( ph  /\  k  e.  A )  ->  B  e.  CC )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  C  e.  CC )   &    |-  (
 ( ph  /\  k  e.  A )  ->  C #  0 )   =>    |-  ( ph  ->  prod_ k  e.  A  ( B  /  C )  =  ( prod_ k  e.  A  B  / 
 prod_ k  e.  A  C ) )
 
Theoremfprodsplitf 11775* Split a finite product into two parts. A version of fprodsplit 11740 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
 |- 
 F/ k ph   &    |-  ( ph  ->  ( A  i^i  B )  =  (/) )   &    |-  ( ph  ->  U  =  ( A  u.  B ) )   &    |-  ( ph  ->  U  e.  Fin )   &    |-  ( ( ph  /\  k  e.  U )  ->  C  e.  CC )   =>    |-  ( ph  ->  prod_ k  e.  U  C  =  (
 prod_ k  e.  A  C  x.  prod_ k  e.  B  C ) )
 
Theoremfprodsplitsn 11776* Separate out a term in a finite product. See also fprodunsn 11747 which is the same but with a distinct variable condition in place of  F/ k ph. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
 |- 
 F/ k ph   &    |-  F/_ k D   &    |-  ( ph  ->  A  e.  Fin )   &    |-  ( ph  ->  B  e.  V )   &    |-  ( ph  ->  -.  B  e.  A )   &    |-  ( ( ph  /\  k  e.  A )  ->  C  e.  CC )   &    |-  ( k  =  B  ->  C  =  D )   &    |-  ( ph  ->  D  e.  CC )   =>    |-  ( ph  ->  prod_
 k  e.  ( A  u.  { B }
 ) C  =  (
 prod_ k  e.  A  C  x.  D ) )
 
Theoremfprodsplit1f 11777* Separate out a term in a finite product. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
 |- 
 F/ k ph   &    |-  ( ph  ->  F/_ k D )   &    |-  ( ph  ->  A  e.  Fin )   &    |-  ( ( ph  /\  k  e.  A )  ->  B  e.  CC )   &    |-  ( ph  ->  C  e.  A )   &    |-  (
 ( ph  /\  k  =  C )  ->  B  =  D )   =>    |-  ( ph  ->  prod_ k  e.  A  B  =  ( D  x.  prod_ k  e.  ( A  \  { C } ) B ) )
 
Theoremfprodclf 11778* Closure of a finite product of complex numbers. A version of fprodcl 11750 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
 |- 
 F/ k ph   &    |-  ( ph  ->  A  e.  Fin )   &    |-  (
 ( ph  /\  k  e.  A )  ->  B  e.  CC )   =>    |-  ( ph  ->  prod_ k  e.  A  B  e.  CC )
 
Theoremfprodap0f 11779* A finite product of terms apart from zero is apart from zero. A version of fprodap0 11764 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020.) (Revised by Jim Kingdon, 30-Aug-2024.)
 |- 
 F/ k ph   &    |-  ( ph  ->  A  e.  Fin )   &    |-  (
 ( ph  /\  k  e.  A )  ->  B  e.  CC )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  B #  0 )   =>    |-  ( ph  ->  prod_
 k  e.  A  B #  0 )
 
Theoremfprodge0 11780* If all the terms of a finite product are nonnegative, so is the product. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
 |- 
 F/ k ph   &    |-  ( ph  ->  A  e.  Fin )   &    |-  (
 ( ph  /\  k  e.  A )  ->  B  e.  RR )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  0  <_  B )   =>    |-  ( ph  ->  0  <_  prod_
 k  e.  A  B )
 
Theoremfprodeq0g 11781* Any finite product containing a zero term is itself zero. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
 |- 
 F/ k ph   &    |-  ( ph  ->  A  e.  Fin )   &    |-  (
 ( ph  /\  k  e.  A )  ->  B  e.  CC )   &    |-  ( ph  ->  C  e.  A )   &    |-  (
 ( ph  /\  k  =  C )  ->  B  =  0 )   =>    |-  ( ph  ->  prod_
 k  e.  A  B  =  0 )
 
Theoremfprodge1 11782* If all of the terms of a finite product are greater than or equal to  1, so is the product. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
 |- 
 F/ k ph   &    |-  ( ph  ->  A  e.  Fin )   &    |-  (
 ( ph  /\  k  e.  A )  ->  B  e.  RR )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  1  <_  B )   =>    |-  ( ph  ->  1  <_  prod_
 k  e.  A  B )
 
Theoremfprodle 11783* If all the terms of two finite products are nonnegative and compare, so do the two products. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
 |- 
 F/ k ph   &    |-  ( ph  ->  A  e.  Fin )   &    |-  (
 ( ph  /\  k  e.  A )  ->  B  e.  RR )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  0  <_  B )   &    |-  ( ( ph  /\  k  e.  A )  ->  C  e.  RR )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  B  <_  C )   =>    |-  ( ph  ->  prod_ k  e.  A  B  <_  prod_ k  e.  A  C )
 
Theoremfprodmodd 11784* If all factors of two finite products are equal modulo  M, the products are equal modulo  M. (Contributed by AV, 7-Jul-2021.)
 |-  ( ph  ->  A  e.  Fin )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  B  e.  ZZ )   &    |-  (
 ( ph  /\  k  e.  A )  ->  C  e.  ZZ )   &    |-  ( ph  ->  M  e.  NN )   &    |-  (
 ( ph  /\  k  e.  A )  ->  ( B  mod  M )  =  ( C  mod  M ) )   =>    |-  ( ph  ->  ( prod_ k  e.  A  B  mod  M )  =  (
 prod_ k  e.  A  C  mod  M ) )
 
4.10  Elementary trigonometry
 
4.10.1  The exponential, sine, and cosine functions
 
Syntaxce 11785 Extend class notation to include the exponential function.
 class  exp
 
Syntaxceu 11786 Extend class notation to include Euler's constant  _e = 2.71828....
 class  _e
 
Syntaxcsin 11787 Extend class notation to include the sine function.
 class  sin
 
Syntaxccos 11788 Extend class notation to include the cosine function.
 class  cos
 
Syntaxctan 11789 Extend class notation to include the tangent function.
 class  tan
 
Syntaxcpi 11790 Extend class notation to include the constant pi,  pi = 3.14159....
 class  pi
 
Definitiondf-ef 11791* Define the exponential function. Its value at the complex number  A is  ( exp `  A
) and is called the "exponential of  A"; see efval 11804. (Contributed by NM, 14-Mar-2005.)
 |- 
 exp  =  ( x  e.  CC  |->  sum_ k  e.  NN0  ( ( x ^
 k )  /  ( ! `  k ) ) )
 
Definitiondf-e 11792 Define Euler's constant  _e = 2.71828.... (Contributed by NM, 14-Mar-2005.)
 |-  _e  =  ( exp `  1 )
 
Definitiondf-sin 11793 Define the sine function. (Contributed by NM, 14-Mar-2005.)
 |- 
 sin  =  ( x  e.  CC  |->  ( ( ( exp `  ( _i  x.  x ) )  -  ( exp `  ( -u _i  x.  x ) ) ) 
 /  ( 2  x.  _i ) ) )
 
Definitiondf-cos 11794 Define the cosine function. (Contributed by NM, 14-Mar-2005.)
 |- 
 cos  =  ( x  e.  CC  |->  ( ( ( exp `  ( _i  x.  x ) )  +  ( exp `  ( -u _i  x.  x ) ) ) 
 /  2 ) )
 
Definitiondf-tan 11795 Define the tangent function. We define it this way for cmpt 4090, which requires the form  ( x  e.  A  |->  B ). (Contributed by Mario Carneiro, 14-Mar-2014.)
 |- 
 tan  =  ( x  e.  ( `' cos " ( CC  \  { 0 } ) )  |->  ( ( sin `  x )  /  ( cos `  x ) ) )
 
Definitiondf-pi 11796 Define the constant pi,  pi = 3.14159..., which is the smallest positive number whose sine is zero. Definition of  pi in [Gleason] p. 311. (Contributed by Paul Chapman, 23-Jan-2008.) (Revised by AV, 14-Sep-2020.)
 |-  pi  = inf ( (
 RR+  i^i  ( `' sin " { 0 } )
 ) ,  RR ,  <  )
 
Theoremeftcl 11797 Closure of a term in the series expansion of the exponential function. (Contributed by Paul Chapman, 11-Sep-2007.)
 |-  ( ( A  e.  CC  /\  K  e.  NN0 )  ->  ( ( A ^ K )  /  ( ! `  K ) )  e.  CC )
 
Theoremreeftcl 11798 The terms of the series expansion of the exponential function at a real number are real. (Contributed by Paul Chapman, 15-Jan-2008.)
 |-  ( ( A  e.  RR  /\  K  e.  NN0 )  ->  ( ( A ^ K )  /  ( ! `  K ) )  e.  RR )
 
Theoremeftabs 11799 The absolute value of a term in the series expansion of the exponential function. (Contributed by Paul Chapman, 23-Nov-2007.)
 |-  ( ( A  e.  CC  /\  K  e.  NN0 )  ->  ( abs `  (
 ( A ^ K )  /  ( ! `  K ) ) )  =  ( ( ( abs `  A ) ^ K )  /  ( ! `  K ) ) )
 
Theoremeftvalcn 11800* The value of a term in the series expansion of the exponential function. (Contributed by Paul Chapman, 21-Aug-2007.) (Revised by Jim Kingdon, 8-Dec-2022.)
 |-  F  =  ( n  e.  NN0  |->  ( ( A ^ n ) 
 /  ( ! `  n ) ) )   =>    |-  ( ( A  e.  CC  /\  N  e.  NN0 )  ->  ( F `  N )  =  (
 ( A ^ N )  /  ( ! `  N ) ) )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15574
  Copyright terms: Public domain < Previous  Next >