ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ennnfonelemom Unicode version

Theorem ennnfonelemom 11928
Description: Lemma for ennnfone 11945. 
H yields finite sequences. (Contributed by Jim Kingdon, 19-Jul-2023.)
Hypotheses
Ref Expression
ennnfonelemh.dceq  |-  ( ph  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y )
ennnfonelemh.f  |-  ( ph  ->  F : om -onto-> A
)
ennnfonelemh.ne  |-  ( ph  ->  A. n  e.  om  E. k  e.  om  A. j  e.  suc  n ( F `  k )  =/=  ( F `  j ) )
ennnfonelemh.g  |-  G  =  ( x  e.  ( A  ^pm  om ) ,  y  e.  om  |->  if ( ( F `  y )  e.  ( F " y ) ,  x ,  ( x  u.  { <. dom  x ,  ( F `
 y ) >. } ) ) )
ennnfonelemh.n  |-  N  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 )
ennnfonelemh.j  |-  J  =  ( x  e.  NN0  |->  if ( x  =  0 ,  (/) ,  ( `' N `  ( x  -  1 ) ) ) )
ennnfonelemh.h  |-  H  =  seq 0 ( G ,  J )
ennnfonelemom.p  |-  ( ph  ->  P  e.  NN0 )
Assertion
Ref Expression
ennnfonelemom  |-  ( ph  ->  dom  ( H `  P )  e.  om )
Distinct variable groups:    A, j, x, y    x, F, y   
j, G    j, J    x, N    ph, j, x, y
Allowed substitution hints:    ph( k, n)    A( k, n)    P( x, y, j, k, n)    F( j, k, n)    G( x, y, k, n)    H( x, y, j, k, n)    J( x, y, k, n)    N( y, j, k, n)

Proof of Theorem ennnfonelemom
Dummy variables  f  g are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ennnfonelemh.h . . . 4  |-  H  =  seq 0 ( G ,  J )
21fveq1i 5422 . . 3  |-  ( H `
 P )  =  (  seq 0 ( G ,  J ) `
 P )
32dmeqi 4740 . 2  |-  dom  ( H `  P )  =  dom  (  seq 0
( G ,  J
) `  P )
4 ennnfonelemh.dceq . . . . . . 7  |-  ( ph  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y )
5 ennnfonelemh.f . . . . . . 7  |-  ( ph  ->  F : om -onto-> A
)
6 ennnfonelemh.ne . . . . . . 7  |-  ( ph  ->  A. n  e.  om  E. k  e.  om  A. j  e.  suc  n ( F `  k )  =/=  ( F `  j ) )
7 ennnfonelemh.g . . . . . . 7  |-  G  =  ( x  e.  ( A  ^pm  om ) ,  y  e.  om  |->  if ( ( F `  y )  e.  ( F " y ) ,  x ,  ( x  u.  { <. dom  x ,  ( F `
 y ) >. } ) ) )
8 ennnfonelemh.n . . . . . . 7  |-  N  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 )
9 ennnfonelemh.j . . . . . . 7  |-  J  =  ( x  e.  NN0  |->  if ( x  =  0 ,  (/) ,  ( `' N `  ( x  -  1 ) ) ) )
104, 5, 6, 7, 8, 9, 1ennnfonelemj0 11921 . . . . . 6  |-  ( ph  ->  ( J `  0
)  e.  { g  e.  ( A  ^pm  om )  |  dom  g  e.  om } )
114, 5, 6, 7, 8, 9, 1ennnfonelemg 11923 . . . . . 6  |-  ( (
ph  /\  ( f  e.  { g  e.  ( A  ^pm  om )  |  dom  g  e.  om }  /\  j  e.  om ) )  ->  (
f G j )  e.  { g  e.  ( A  ^pm  om )  |  dom  g  e.  om } )
12 nn0uz 9367 . . . . . 6  |-  NN0  =  ( ZZ>= `  0 )
13 0zd 9073 . . . . . 6  |-  ( ph  ->  0  e.  ZZ )
144, 5, 6, 7, 8, 9, 1ennnfonelemjn 11922 . . . . . 6  |-  ( (
ph  /\  f  e.  ( ZZ>= `  ( 0  +  1 ) ) )  ->  ( J `  f )  e.  om )
1510, 11, 12, 13, 14seqf2 10244 . . . . 5  |-  ( ph  ->  seq 0 ( G ,  J ) : NN0 --> { g  e.  ( A  ^pm  om )  |  dom  g  e.  om } )
16 ennnfonelemom.p . . . . 5  |-  ( ph  ->  P  e.  NN0 )
1715, 16ffvelrnd 5556 . . . 4  |-  ( ph  ->  (  seq 0 ( G ,  J ) `
 P )  e. 
{ g  e.  ( A  ^pm  om )  |  dom  g  e.  om } )
18 dmeq 4739 . . . . . 6  |-  ( g  =  (  seq 0
( G ,  J
) `  P )  ->  dom  g  =  dom  (  seq 0 ( G ,  J ) `  P ) )
1918eleq1d 2208 . . . . 5  |-  ( g  =  (  seq 0
( G ,  J
) `  P )  ->  ( dom  g  e. 
om 
<->  dom  (  seq 0
( G ,  J
) `  P )  e.  om ) )
2019elrab 2840 . . . 4  |-  ( (  seq 0 ( G ,  J ) `  P )  e.  {
g  e.  ( A 
^pm  om )  |  dom  g  e.  om }  <->  ( (  seq 0 ( G ,  J ) `  P
)  e.  ( A 
^pm  om )  /\  dom  (  seq 0 ( G ,  J ) `  P )  e.  om ) )
2117, 20sylib 121 . . 3  |-  ( ph  ->  ( (  seq 0
( G ,  J
) `  P )  e.  ( A  ^pm  om )  /\  dom  (  seq 0
( G ,  J
) `  P )  e.  om ) )
2221simprd 113 . 2  |-  ( ph  ->  dom  (  seq 0
( G ,  J
) `  P )  e.  om )
233, 22eqeltrid 2226 1  |-  ( ph  ->  dom  ( H `  P )  e.  om )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103  DECID wdc 819    = wceq 1331    e. wcel 1480    =/= wne 2308   A.wral 2416   E.wrex 2417   {crab 2420    u. cun 3069   (/)c0 3363   ifcif 3474   {csn 3527   <.cop 3530    |-> cmpt 3989   suc csuc 4287   omcom 4504   `'ccnv 4538   dom cdm 4539   "cima 4542   -onto->wfo 5121   ` cfv 5123  (class class class)co 5774    e. cmpo 5776  freccfrec 6287    ^pm cpm 6543   0cc0 7627   1c1 7628    + caddc 7630    - cmin 7940   NN0cn0 8984   ZZcz 9061    seqcseq 10225
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7718  ax-resscn 7719  ax-1cn 7720  ax-1re 7721  ax-icn 7722  ax-addcl 7723  ax-addrcl 7724  ax-mulcl 7725  ax-addcom 7727  ax-addass 7729  ax-distr 7731  ax-i2m1 7732  ax-0lt1 7733  ax-0id 7735  ax-rnegex 7736  ax-cnre 7738  ax-pre-ltirr 7739  ax-pre-ltwlin 7740  ax-pre-lttrn 7741  ax-pre-ltadd 7743
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-frec 6288  df-pm 6545  df-pnf 7809  df-mnf 7810  df-xr 7811  df-ltxr 7812  df-le 7813  df-sub 7942  df-neg 7943  df-inn 8728  df-n0 8985  df-z 9062  df-uz 9334  df-seqfrec 10226
This theorem is referenced by:  ennnfonelemkh  11932  ennnfonelemhf1o  11933  ennnfonelemex  11934  ennnfonelemhom  11935  ennnfonelemdm  11940
  Copyright terms: Public domain W3C validator