ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ennnfonelemom Unicode version

Theorem ennnfonelemom 12363
Description: Lemma for ennnfone 12380. 
H yields finite sequences. (Contributed by Jim Kingdon, 19-Jul-2023.)
Hypotheses
Ref Expression
ennnfonelemh.dceq  |-  ( ph  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y )
ennnfonelemh.f  |-  ( ph  ->  F : om -onto-> A
)
ennnfonelemh.ne  |-  ( ph  ->  A. n  e.  om  E. k  e.  om  A. j  e.  suc  n ( F `  k )  =/=  ( F `  j ) )
ennnfonelemh.g  |-  G  =  ( x  e.  ( A  ^pm  om ) ,  y  e.  om  |->  if ( ( F `  y )  e.  ( F " y ) ,  x ,  ( x  u.  { <. dom  x ,  ( F `
 y ) >. } ) ) )
ennnfonelemh.n  |-  N  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 )
ennnfonelemh.j  |-  J  =  ( x  e.  NN0  |->  if ( x  =  0 ,  (/) ,  ( `' N `  ( x  -  1 ) ) ) )
ennnfonelemh.h  |-  H  =  seq 0 ( G ,  J )
ennnfonelemom.p  |-  ( ph  ->  P  e.  NN0 )
Assertion
Ref Expression
ennnfonelemom  |-  ( ph  ->  dom  ( H `  P )  e.  om )
Distinct variable groups:    A, j, x, y    x, F, y   
j, G    j, J    x, N    ph, j, x, y
Allowed substitution hints:    ph( k, n)    A( k, n)    P( x, y, j, k, n)    F( j, k, n)    G( x, y, k, n)    H( x, y, j, k, n)    J( x, y, k, n)    N( y, j, k, n)

Proof of Theorem ennnfonelemom
Dummy variables  f  g are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ennnfonelemh.h . . . 4  |-  H  =  seq 0 ( G ,  J )
21fveq1i 5497 . . 3  |-  ( H `
 P )  =  (  seq 0 ( G ,  J ) `
 P )
32dmeqi 4812 . 2  |-  dom  ( H `  P )  =  dom  (  seq 0
( G ,  J
) `  P )
4 ennnfonelemh.dceq . . . . . . 7  |-  ( ph  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y )
5 ennnfonelemh.f . . . . . . 7  |-  ( ph  ->  F : om -onto-> A
)
6 ennnfonelemh.ne . . . . . . 7  |-  ( ph  ->  A. n  e.  om  E. k  e.  om  A. j  e.  suc  n ( F `  k )  =/=  ( F `  j ) )
7 ennnfonelemh.g . . . . . . 7  |-  G  =  ( x  e.  ( A  ^pm  om ) ,  y  e.  om  |->  if ( ( F `  y )  e.  ( F " y ) ,  x ,  ( x  u.  { <. dom  x ,  ( F `
 y ) >. } ) ) )
8 ennnfonelemh.n . . . . . . 7  |-  N  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 )
9 ennnfonelemh.j . . . . . . 7  |-  J  =  ( x  e.  NN0  |->  if ( x  =  0 ,  (/) ,  ( `' N `  ( x  -  1 ) ) ) )
104, 5, 6, 7, 8, 9, 1ennnfonelemj0 12356 . . . . . 6  |-  ( ph  ->  ( J `  0
)  e.  { g  e.  ( A  ^pm  om )  |  dom  g  e.  om } )
114, 5, 6, 7, 8, 9, 1ennnfonelemg 12358 . . . . . 6  |-  ( (
ph  /\  ( f  e.  { g  e.  ( A  ^pm  om )  |  dom  g  e.  om }  /\  j  e.  om ) )  ->  (
f G j )  e.  { g  e.  ( A  ^pm  om )  |  dom  g  e.  om } )
12 nn0uz 9521 . . . . . 6  |-  NN0  =  ( ZZ>= `  0 )
13 0zd 9224 . . . . . 6  |-  ( ph  ->  0  e.  ZZ )
144, 5, 6, 7, 8, 9, 1ennnfonelemjn 12357 . . . . . 6  |-  ( (
ph  /\  f  e.  ( ZZ>= `  ( 0  +  1 ) ) )  ->  ( J `  f )  e.  om )
1510, 11, 12, 13, 14seqf2 10420 . . . . 5  |-  ( ph  ->  seq 0 ( G ,  J ) : NN0 --> { g  e.  ( A  ^pm  om )  |  dom  g  e.  om } )
16 ennnfonelemom.p . . . . 5  |-  ( ph  ->  P  e.  NN0 )
1715, 16ffvelrnd 5632 . . . 4  |-  ( ph  ->  (  seq 0 ( G ,  J ) `
 P )  e. 
{ g  e.  ( A  ^pm  om )  |  dom  g  e.  om } )
18 dmeq 4811 . . . . . 6  |-  ( g  =  (  seq 0
( G ,  J
) `  P )  ->  dom  g  =  dom  (  seq 0 ( G ,  J ) `  P ) )
1918eleq1d 2239 . . . . 5  |-  ( g  =  (  seq 0
( G ,  J
) `  P )  ->  ( dom  g  e. 
om 
<->  dom  (  seq 0
( G ,  J
) `  P )  e.  om ) )
2019elrab 2886 . . . 4  |-  ( (  seq 0 ( G ,  J ) `  P )  e.  {
g  e.  ( A 
^pm  om )  |  dom  g  e.  om }  <->  ( (  seq 0 ( G ,  J ) `  P
)  e.  ( A 
^pm  om )  /\  dom  (  seq 0 ( G ,  J ) `  P )  e.  om ) )
2117, 20sylib 121 . . 3  |-  ( ph  ->  ( (  seq 0
( G ,  J
) `  P )  e.  ( A  ^pm  om )  /\  dom  (  seq 0
( G ,  J
) `  P )  e.  om ) )
2221simprd 113 . 2  |-  ( ph  ->  dom  (  seq 0
( G ,  J
) `  P )  e.  om )
233, 22eqeltrid 2257 1  |-  ( ph  ->  dom  ( H `  P )  e.  om )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103  DECID wdc 829    = wceq 1348    e. wcel 2141    =/= wne 2340   A.wral 2448   E.wrex 2449   {crab 2452    u. cun 3119   (/)c0 3414   ifcif 3526   {csn 3583   <.cop 3586    |-> cmpt 4050   suc csuc 4350   omcom 4574   `'ccnv 4610   dom cdm 4611   "cima 4614   -onto->wfo 5196   ` cfv 5198  (class class class)co 5853    e. cmpo 5855  freccfrec 6369    ^pm cpm 6627   0cc0 7774   1c1 7775    + caddc 7777    - cmin 8090   NN0cn0 9135   ZZcz 9212    seqcseq 10401
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-addcom 7874  ax-addass 7876  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-0id 7882  ax-rnegex 7883  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-ltadd 7890
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-frec 6370  df-pm 6629  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-inn 8879  df-n0 9136  df-z 9213  df-uz 9488  df-seqfrec 10402
This theorem is referenced by:  ennnfonelemkh  12367  ennnfonelemhf1o  12368  ennnfonelemex  12369  ennnfonelemhom  12370  ennnfonelemdm  12375
  Copyright terms: Public domain W3C validator