ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvdsflip Unicode version

Theorem dvdsflip 11811
Description: An involution of the divisors of a number. (Contributed by Stefan O'Rear, 12-Sep-2015.) (Proof shortened by Mario Carneiro, 13-May-2016.)
Hypotheses
Ref Expression
dvdsflip.a  |-  A  =  { x  e.  NN  |  x  ||  N }
dvdsflip.f  |-  F  =  ( y  e.  A  |->  ( N  /  y
) )
Assertion
Ref Expression
dvdsflip  |-  ( N  e.  NN  ->  F : A -1-1-onto-> A )
Distinct variable groups:    y, A    x, y, N
Allowed substitution hints:    A( x)    F( x, y)

Proof of Theorem dvdsflip
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 dvdsflip.f . 2  |-  F  =  ( y  e.  A  |->  ( N  /  y
) )
2 dvdsflip.a . . . . 5  |-  A  =  { x  e.  NN  |  x  ||  N }
32eleq2i 2237 . . . 4  |-  ( y  e.  A  <->  y  e.  { x  e.  NN  |  x  ||  N } )
4 dvdsdivcl 11810 . . . 4  |-  ( ( N  e.  NN  /\  y  e.  { x  e.  NN  |  x  ||  N } )  ->  ( N  /  y )  e. 
{ x  e.  NN  |  x  ||  N }
)
53, 4sylan2b 285 . . 3  |-  ( ( N  e.  NN  /\  y  e.  A )  ->  ( N  /  y
)  e.  { x  e.  NN  |  x  ||  N } )
65, 2eleqtrrdi 2264 . 2  |-  ( ( N  e.  NN  /\  y  e.  A )  ->  ( N  /  y
)  e.  A )
72eleq2i 2237 . . . 4  |-  ( z  e.  A  <->  z  e.  { x  e.  NN  |  x  ||  N } )
8 dvdsdivcl 11810 . . . 4  |-  ( ( N  e.  NN  /\  z  e.  { x  e.  NN  |  x  ||  N } )  ->  ( N  /  z )  e. 
{ x  e.  NN  |  x  ||  N }
)
97, 8sylan2b 285 . . 3  |-  ( ( N  e.  NN  /\  z  e.  A )  ->  ( N  /  z
)  e.  { x  e.  NN  |  x  ||  N } )
109, 2eleqtrrdi 2264 . 2  |-  ( ( N  e.  NN  /\  z  e.  A )  ->  ( N  /  z
)  e.  A )
11 ssrab2 3232 . . . . . . 7  |-  { x  e.  NN  |  x  ||  N }  C_  NN
122, 11eqsstri 3179 . . . . . 6  |-  A  C_  NN
1312sseli 3143 . . . . 5  |-  ( y  e.  A  ->  y  e.  NN )
1412sseli 3143 . . . . 5  |-  ( z  e.  A  ->  z  e.  NN )
1513, 14anim12i 336 . . . 4  |-  ( ( y  e.  A  /\  z  e.  A )  ->  ( y  e.  NN  /\  z  e.  NN ) )
16 nncn 8886 . . . . . . 7  |-  ( N  e.  NN  ->  N  e.  CC )
1716adantr 274 . . . . . 6  |-  ( ( N  e.  NN  /\  ( y  e.  NN  /\  z  e.  NN ) )  ->  N  e.  CC )
18 nncn 8886 . . . . . . 7  |-  ( y  e.  NN  ->  y  e.  CC )
1918ad2antrl 487 . . . . . 6  |-  ( ( N  e.  NN  /\  ( y  e.  NN  /\  z  e.  NN ) )  ->  y  e.  CC )
20 nncn 8886 . . . . . . 7  |-  ( z  e.  NN  ->  z  e.  CC )
2120ad2antll 488 . . . . . 6  |-  ( ( N  e.  NN  /\  ( y  e.  NN  /\  z  e.  NN ) )  ->  z  e.  CC )
22 simprr 527 . . . . . . 7  |-  ( ( N  e.  NN  /\  ( y  e.  NN  /\  z  e.  NN ) )  ->  z  e.  NN )
2322nnap0d 8924 . . . . . 6  |-  ( ( N  e.  NN  /\  ( y  e.  NN  /\  z  e.  NN ) )  ->  z #  0
)
2417, 19, 21, 23divmulap3d 8742 . . . . 5  |-  ( ( N  e.  NN  /\  ( y  e.  NN  /\  z  e.  NN ) )  ->  ( ( N  /  z )  =  y  <->  N  =  (
y  x.  z ) ) )
25 simprl 526 . . . . . . 7  |-  ( ( N  e.  NN  /\  ( y  e.  NN  /\  z  e.  NN ) )  ->  y  e.  NN )
2625nnap0d 8924 . . . . . 6  |-  ( ( N  e.  NN  /\  ( y  e.  NN  /\  z  e.  NN ) )  ->  y #  0
)
2717, 21, 19, 26divmulap2d 8741 . . . . 5  |-  ( ( N  e.  NN  /\  ( y  e.  NN  /\  z  e.  NN ) )  ->  ( ( N  /  y )  =  z  <->  N  =  (
y  x.  z ) ) )
2824, 27bitr4d 190 . . . 4  |-  ( ( N  e.  NN  /\  ( y  e.  NN  /\  z  e.  NN ) )  ->  ( ( N  /  z )  =  y  <->  ( N  / 
y )  =  z ) )
2915, 28sylan2 284 . . 3  |-  ( ( N  e.  NN  /\  ( y  e.  A  /\  z  e.  A
) )  ->  (
( N  /  z
)  =  y  <->  ( N  /  y )  =  z ) )
30 eqcom 2172 . . 3  |-  ( y  =  ( N  / 
z )  <->  ( N  /  z )  =  y )
31 eqcom 2172 . . 3  |-  ( z  =  ( N  / 
y )  <->  ( N  /  y )  =  z )
3229, 30, 313bitr4g 222 . 2  |-  ( ( N  e.  NN  /\  ( y  e.  A  /\  z  e.  A
) )  ->  (
y  =  ( N  /  z )  <->  z  =  ( N  /  y
) ) )
331, 6, 10, 32f1o2d 6054 1  |-  ( N  e.  NN  ->  F : A -1-1-onto-> A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1348    e. wcel 2141   {crab 2452   class class class wbr 3989    |-> cmpt 4050   -1-1-onto->wf1o 5197  (class class class)co 5853   CCcc 7772    x. cmul 7779    / cdiv 8589   NNcn 8878    || cdvds 11749
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892
This theorem depends on definitions:  df-bi 116  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-po 4281  df-iso 4282  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-n0 9136  df-z 9213  df-dvds 11750
This theorem is referenced by:  phisum  12194
  Copyright terms: Public domain W3C validator