ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvdsflip Unicode version

Theorem dvdsflip 11789
Description: An involution of the divisors of a number. (Contributed by Stefan O'Rear, 12-Sep-2015.) (Proof shortened by Mario Carneiro, 13-May-2016.)
Hypotheses
Ref Expression
dvdsflip.a  |-  A  =  { x  e.  NN  |  x  ||  N }
dvdsflip.f  |-  F  =  ( y  e.  A  |->  ( N  /  y
) )
Assertion
Ref Expression
dvdsflip  |-  ( N  e.  NN  ->  F : A -1-1-onto-> A )
Distinct variable groups:    y, A    x, y, N
Allowed substitution hints:    A( x)    F( x, y)

Proof of Theorem dvdsflip
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 dvdsflip.f . 2  |-  F  =  ( y  e.  A  |->  ( N  /  y
) )
2 dvdsflip.a . . . . 5  |-  A  =  { x  e.  NN  |  x  ||  N }
32eleq2i 2233 . . . 4  |-  ( y  e.  A  <->  y  e.  { x  e.  NN  |  x  ||  N } )
4 dvdsdivcl 11788 . . . 4  |-  ( ( N  e.  NN  /\  y  e.  { x  e.  NN  |  x  ||  N } )  ->  ( N  /  y )  e. 
{ x  e.  NN  |  x  ||  N }
)
53, 4sylan2b 285 . . 3  |-  ( ( N  e.  NN  /\  y  e.  A )  ->  ( N  /  y
)  e.  { x  e.  NN  |  x  ||  N } )
65, 2eleqtrrdi 2260 . 2  |-  ( ( N  e.  NN  /\  y  e.  A )  ->  ( N  /  y
)  e.  A )
72eleq2i 2233 . . . 4  |-  ( z  e.  A  <->  z  e.  { x  e.  NN  |  x  ||  N } )
8 dvdsdivcl 11788 . . . 4  |-  ( ( N  e.  NN  /\  z  e.  { x  e.  NN  |  x  ||  N } )  ->  ( N  /  z )  e. 
{ x  e.  NN  |  x  ||  N }
)
97, 8sylan2b 285 . . 3  |-  ( ( N  e.  NN  /\  z  e.  A )  ->  ( N  /  z
)  e.  { x  e.  NN  |  x  ||  N } )
109, 2eleqtrrdi 2260 . 2  |-  ( ( N  e.  NN  /\  z  e.  A )  ->  ( N  /  z
)  e.  A )
11 ssrab2 3227 . . . . . . 7  |-  { x  e.  NN  |  x  ||  N }  C_  NN
122, 11eqsstri 3174 . . . . . 6  |-  A  C_  NN
1312sseli 3138 . . . . 5  |-  ( y  e.  A  ->  y  e.  NN )
1412sseli 3138 . . . . 5  |-  ( z  e.  A  ->  z  e.  NN )
1513, 14anim12i 336 . . . 4  |-  ( ( y  e.  A  /\  z  e.  A )  ->  ( y  e.  NN  /\  z  e.  NN ) )
16 nncn 8865 . . . . . . 7  |-  ( N  e.  NN  ->  N  e.  CC )
1716adantr 274 . . . . . 6  |-  ( ( N  e.  NN  /\  ( y  e.  NN  /\  z  e.  NN ) )  ->  N  e.  CC )
18 nncn 8865 . . . . . . 7  |-  ( y  e.  NN  ->  y  e.  CC )
1918ad2antrl 482 . . . . . 6  |-  ( ( N  e.  NN  /\  ( y  e.  NN  /\  z  e.  NN ) )  ->  y  e.  CC )
20 nncn 8865 . . . . . . 7  |-  ( z  e.  NN  ->  z  e.  CC )
2120ad2antll 483 . . . . . 6  |-  ( ( N  e.  NN  /\  ( y  e.  NN  /\  z  e.  NN ) )  ->  z  e.  CC )
22 simprr 522 . . . . . . 7  |-  ( ( N  e.  NN  /\  ( y  e.  NN  /\  z  e.  NN ) )  ->  z  e.  NN )
2322nnap0d 8903 . . . . . 6  |-  ( ( N  e.  NN  /\  ( y  e.  NN  /\  z  e.  NN ) )  ->  z #  0
)
2417, 19, 21, 23divmulap3d 8721 . . . . 5  |-  ( ( N  e.  NN  /\  ( y  e.  NN  /\  z  e.  NN ) )  ->  ( ( N  /  z )  =  y  <->  N  =  (
y  x.  z ) ) )
25 simprl 521 . . . . . . 7  |-  ( ( N  e.  NN  /\  ( y  e.  NN  /\  z  e.  NN ) )  ->  y  e.  NN )
2625nnap0d 8903 . . . . . 6  |-  ( ( N  e.  NN  /\  ( y  e.  NN  /\  z  e.  NN ) )  ->  y #  0
)
2717, 21, 19, 26divmulap2d 8720 . . . . 5  |-  ( ( N  e.  NN  /\  ( y  e.  NN  /\  z  e.  NN ) )  ->  ( ( N  /  y )  =  z  <->  N  =  (
y  x.  z ) ) )
2824, 27bitr4d 190 . . . 4  |-  ( ( N  e.  NN  /\  ( y  e.  NN  /\  z  e.  NN ) )  ->  ( ( N  /  z )  =  y  <->  ( N  / 
y )  =  z ) )
2915, 28sylan2 284 . . 3  |-  ( ( N  e.  NN  /\  ( y  e.  A  /\  z  e.  A
) )  ->  (
( N  /  z
)  =  y  <->  ( N  /  y )  =  z ) )
30 eqcom 2167 . . 3  |-  ( y  =  ( N  / 
z )  <->  ( N  /  z )  =  y )
31 eqcom 2167 . . 3  |-  ( z  =  ( N  / 
y )  <->  ( N  /  y )  =  z )
3229, 30, 313bitr4g 222 . 2  |-  ( ( N  e.  NN  /\  ( y  e.  A  /\  z  e.  A
) )  ->  (
y  =  ( N  /  z )  <->  z  =  ( N  /  y
) ) )
331, 6, 10, 32f1o2d 6043 1  |-  ( N  e.  NN  ->  F : A -1-1-onto-> A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1343    e. wcel 2136   {crab 2448   class class class wbr 3982    |-> cmpt 4043   -1-1-onto->wf1o 5187  (class class class)co 5842   CCcc 7751    x. cmul 7758    / cdiv 8568   NNcn 8857    || cdvds 11727
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871
This theorem depends on definitions:  df-bi 116  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-po 4274  df-iso 4275  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-n0 9115  df-z 9192  df-dvds 11728
This theorem is referenced by:  phisum  12172
  Copyright terms: Public domain W3C validator