ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvdsflip Unicode version

Theorem dvdsflip 12016
Description: An involution of the divisors of a number. (Contributed by Stefan O'Rear, 12-Sep-2015.) (Proof shortened by Mario Carneiro, 13-May-2016.)
Hypotheses
Ref Expression
dvdsflip.a  |-  A  =  { x  e.  NN  |  x  ||  N }
dvdsflip.f  |-  F  =  ( y  e.  A  |->  ( N  /  y
) )
Assertion
Ref Expression
dvdsflip  |-  ( N  e.  NN  ->  F : A -1-1-onto-> A )
Distinct variable groups:    y, A    x, y, N
Allowed substitution hints:    A( x)    F( x, y)

Proof of Theorem dvdsflip
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 dvdsflip.f . 2  |-  F  =  ( y  e.  A  |->  ( N  /  y
) )
2 dvdsflip.a . . . . 5  |-  A  =  { x  e.  NN  |  x  ||  N }
32eleq2i 2263 . . . 4  |-  ( y  e.  A  <->  y  e.  { x  e.  NN  |  x  ||  N } )
4 dvdsdivcl 12015 . . . 4  |-  ( ( N  e.  NN  /\  y  e.  { x  e.  NN  |  x  ||  N } )  ->  ( N  /  y )  e. 
{ x  e.  NN  |  x  ||  N }
)
53, 4sylan2b 287 . . 3  |-  ( ( N  e.  NN  /\  y  e.  A )  ->  ( N  /  y
)  e.  { x  e.  NN  |  x  ||  N } )
65, 2eleqtrrdi 2290 . 2  |-  ( ( N  e.  NN  /\  y  e.  A )  ->  ( N  /  y
)  e.  A )
72eleq2i 2263 . . . 4  |-  ( z  e.  A  <->  z  e.  { x  e.  NN  |  x  ||  N } )
8 dvdsdivcl 12015 . . . 4  |-  ( ( N  e.  NN  /\  z  e.  { x  e.  NN  |  x  ||  N } )  ->  ( N  /  z )  e. 
{ x  e.  NN  |  x  ||  N }
)
97, 8sylan2b 287 . . 3  |-  ( ( N  e.  NN  /\  z  e.  A )  ->  ( N  /  z
)  e.  { x  e.  NN  |  x  ||  N } )
109, 2eleqtrrdi 2290 . 2  |-  ( ( N  e.  NN  /\  z  e.  A )  ->  ( N  /  z
)  e.  A )
11 ssrab2 3268 . . . . . . 7  |-  { x  e.  NN  |  x  ||  N }  C_  NN
122, 11eqsstri 3215 . . . . . 6  |-  A  C_  NN
1312sseli 3179 . . . . 5  |-  ( y  e.  A  ->  y  e.  NN )
1412sseli 3179 . . . . 5  |-  ( z  e.  A  ->  z  e.  NN )
1513, 14anim12i 338 . . . 4  |-  ( ( y  e.  A  /\  z  e.  A )  ->  ( y  e.  NN  /\  z  e.  NN ) )
16 nncn 8998 . . . . . . 7  |-  ( N  e.  NN  ->  N  e.  CC )
1716adantr 276 . . . . . 6  |-  ( ( N  e.  NN  /\  ( y  e.  NN  /\  z  e.  NN ) )  ->  N  e.  CC )
18 nncn 8998 . . . . . . 7  |-  ( y  e.  NN  ->  y  e.  CC )
1918ad2antrl 490 . . . . . 6  |-  ( ( N  e.  NN  /\  ( y  e.  NN  /\  z  e.  NN ) )  ->  y  e.  CC )
20 nncn 8998 . . . . . . 7  |-  ( z  e.  NN  ->  z  e.  CC )
2120ad2antll 491 . . . . . 6  |-  ( ( N  e.  NN  /\  ( y  e.  NN  /\  z  e.  NN ) )  ->  z  e.  CC )
22 simprr 531 . . . . . . 7  |-  ( ( N  e.  NN  /\  ( y  e.  NN  /\  z  e.  NN ) )  ->  z  e.  NN )
2322nnap0d 9036 . . . . . 6  |-  ( ( N  e.  NN  /\  ( y  e.  NN  /\  z  e.  NN ) )  ->  z #  0
)
2417, 19, 21, 23divmulap3d 8852 . . . . 5  |-  ( ( N  e.  NN  /\  ( y  e.  NN  /\  z  e.  NN ) )  ->  ( ( N  /  z )  =  y  <->  N  =  (
y  x.  z ) ) )
25 simprl 529 . . . . . . 7  |-  ( ( N  e.  NN  /\  ( y  e.  NN  /\  z  e.  NN ) )  ->  y  e.  NN )
2625nnap0d 9036 . . . . . 6  |-  ( ( N  e.  NN  /\  ( y  e.  NN  /\  z  e.  NN ) )  ->  y #  0
)
2717, 21, 19, 26divmulap2d 8851 . . . . 5  |-  ( ( N  e.  NN  /\  ( y  e.  NN  /\  z  e.  NN ) )  ->  ( ( N  /  y )  =  z  <->  N  =  (
y  x.  z ) ) )
2824, 27bitr4d 191 . . . 4  |-  ( ( N  e.  NN  /\  ( y  e.  NN  /\  z  e.  NN ) )  ->  ( ( N  /  z )  =  y  <->  ( N  / 
y )  =  z ) )
2915, 28sylan2 286 . . 3  |-  ( ( N  e.  NN  /\  ( y  e.  A  /\  z  e.  A
) )  ->  (
( N  /  z
)  =  y  <->  ( N  /  y )  =  z ) )
30 eqcom 2198 . . 3  |-  ( y  =  ( N  / 
z )  <->  ( N  /  z )  =  y )
31 eqcom 2198 . . 3  |-  ( z  =  ( N  / 
y )  <->  ( N  /  y )  =  z )
3229, 30, 313bitr4g 223 . 2  |-  ( ( N  e.  NN  /\  ( y  e.  A  /\  z  e.  A
) )  ->  (
y  =  ( N  /  z )  <->  z  =  ( N  /  y
) ) )
331, 6, 10, 32f1o2d 6128 1  |-  ( N  e.  NN  ->  F : A -1-1-onto-> A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2167   {crab 2479   class class class wbr 4033    |-> cmpt 4094   -1-1-onto->wf1o 5257  (class class class)co 5922   CCcc 7877    x. cmul 7884    / cdiv 8699   NNcn 8990    || cdvds 11952
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-po 4331  df-iso 4332  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-n0 9250  df-z 9327  df-dvds 11953
This theorem is referenced by:  phisum  12409
  Copyright terms: Public domain W3C validator