ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvdsflip Unicode version

Theorem dvdsflip 11445
Description: An involution of the divisors of a number. (Contributed by Stefan O'Rear, 12-Sep-2015.) (Proof shortened by Mario Carneiro, 13-May-2016.)
Hypotheses
Ref Expression
dvdsflip.a  |-  A  =  { x  e.  NN  |  x  ||  N }
dvdsflip.f  |-  F  =  ( y  e.  A  |->  ( N  /  y
) )
Assertion
Ref Expression
dvdsflip  |-  ( N  e.  NN  ->  F : A -1-1-onto-> A )
Distinct variable groups:    y, A    x, y, N
Allowed substitution hints:    A( x)    F( x, y)

Proof of Theorem dvdsflip
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 dvdsflip.f . 2  |-  F  =  ( y  e.  A  |->  ( N  /  y
) )
2 dvdsflip.a . . . . 5  |-  A  =  { x  e.  NN  |  x  ||  N }
32eleq2i 2182 . . . 4  |-  ( y  e.  A  <->  y  e.  { x  e.  NN  |  x  ||  N } )
4 dvdsdivcl 11444 . . . 4  |-  ( ( N  e.  NN  /\  y  e.  { x  e.  NN  |  x  ||  N } )  ->  ( N  /  y )  e. 
{ x  e.  NN  |  x  ||  N }
)
53, 4sylan2b 283 . . 3  |-  ( ( N  e.  NN  /\  y  e.  A )  ->  ( N  /  y
)  e.  { x  e.  NN  |  x  ||  N } )
65, 2syl6eleqr 2209 . 2  |-  ( ( N  e.  NN  /\  y  e.  A )  ->  ( N  /  y
)  e.  A )
72eleq2i 2182 . . . 4  |-  ( z  e.  A  <->  z  e.  { x  e.  NN  |  x  ||  N } )
8 dvdsdivcl 11444 . . . 4  |-  ( ( N  e.  NN  /\  z  e.  { x  e.  NN  |  x  ||  N } )  ->  ( N  /  z )  e. 
{ x  e.  NN  |  x  ||  N }
)
97, 8sylan2b 283 . . 3  |-  ( ( N  e.  NN  /\  z  e.  A )  ->  ( N  /  z
)  e.  { x  e.  NN  |  x  ||  N } )
109, 2syl6eleqr 2209 . 2  |-  ( ( N  e.  NN  /\  z  e.  A )  ->  ( N  /  z
)  e.  A )
11 ssrab2 3150 . . . . . . 7  |-  { x  e.  NN  |  x  ||  N }  C_  NN
122, 11eqsstri 3097 . . . . . 6  |-  A  C_  NN
1312sseli 3061 . . . . 5  |-  ( y  e.  A  ->  y  e.  NN )
1412sseli 3061 . . . . 5  |-  ( z  e.  A  ->  z  e.  NN )
1513, 14anim12i 334 . . . 4  |-  ( ( y  e.  A  /\  z  e.  A )  ->  ( y  e.  NN  /\  z  e.  NN ) )
16 nncn 8685 . . . . . . 7  |-  ( N  e.  NN  ->  N  e.  CC )
1716adantr 272 . . . . . 6  |-  ( ( N  e.  NN  /\  ( y  e.  NN  /\  z  e.  NN ) )  ->  N  e.  CC )
18 nncn 8685 . . . . . . 7  |-  ( y  e.  NN  ->  y  e.  CC )
1918ad2antrl 479 . . . . . 6  |-  ( ( N  e.  NN  /\  ( y  e.  NN  /\  z  e.  NN ) )  ->  y  e.  CC )
20 nncn 8685 . . . . . . 7  |-  ( z  e.  NN  ->  z  e.  CC )
2120ad2antll 480 . . . . . 6  |-  ( ( N  e.  NN  /\  ( y  e.  NN  /\  z  e.  NN ) )  ->  z  e.  CC )
22 simprr 504 . . . . . . 7  |-  ( ( N  e.  NN  /\  ( y  e.  NN  /\  z  e.  NN ) )  ->  z  e.  NN )
2322nnap0d 8723 . . . . . 6  |-  ( ( N  e.  NN  /\  ( y  e.  NN  /\  z  e.  NN ) )  ->  z #  0
)
2417, 19, 21, 23divmulap3d 8545 . . . . 5  |-  ( ( N  e.  NN  /\  ( y  e.  NN  /\  z  e.  NN ) )  ->  ( ( N  /  z )  =  y  <->  N  =  (
y  x.  z ) ) )
25 simprl 503 . . . . . . 7  |-  ( ( N  e.  NN  /\  ( y  e.  NN  /\  z  e.  NN ) )  ->  y  e.  NN )
2625nnap0d 8723 . . . . . 6  |-  ( ( N  e.  NN  /\  ( y  e.  NN  /\  z  e.  NN ) )  ->  y #  0
)
2717, 21, 19, 26divmulap2d 8544 . . . . 5  |-  ( ( N  e.  NN  /\  ( y  e.  NN  /\  z  e.  NN ) )  ->  ( ( N  /  y )  =  z  <->  N  =  (
y  x.  z ) ) )
2824, 27bitr4d 190 . . . 4  |-  ( ( N  e.  NN  /\  ( y  e.  NN  /\  z  e.  NN ) )  ->  ( ( N  /  z )  =  y  <->  ( N  / 
y )  =  z ) )
2915, 28sylan2 282 . . 3  |-  ( ( N  e.  NN  /\  ( y  e.  A  /\  z  e.  A
) )  ->  (
( N  /  z
)  =  y  <->  ( N  /  y )  =  z ) )
30 eqcom 2117 . . 3  |-  ( y  =  ( N  / 
z )  <->  ( N  /  z )  =  y )
31 eqcom 2117 . . 3  |-  ( z  =  ( N  / 
y )  <->  ( N  /  y )  =  z )
3229, 30, 313bitr4g 222 . 2  |-  ( ( N  e.  NN  /\  ( y  e.  A  /\  z  e.  A
) )  ->  (
y  =  ( N  /  z )  <->  z  =  ( N  /  y
) ) )
331, 6, 10, 32f1o2d 5941 1  |-  ( N  e.  NN  ->  F : A -1-1-onto-> A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1314    e. wcel 1463   {crab 2395   class class class wbr 3897    |-> cmpt 3957   -1-1-onto->wf1o 5090  (class class class)co 5740   CCcc 7582    x. cmul 7589    / cdiv 8392   NNcn 8677    || cdvds 11389
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-sep 4014  ax-pow 4066  ax-pr 4099  ax-un 4323  ax-setind 4420  ax-cnex 7675  ax-resscn 7676  ax-1cn 7677  ax-1re 7678  ax-icn 7679  ax-addcl 7680  ax-addrcl 7681  ax-mulcl 7682  ax-mulrcl 7683  ax-addcom 7684  ax-mulcom 7685  ax-addass 7686  ax-mulass 7687  ax-distr 7688  ax-i2m1 7689  ax-0lt1 7690  ax-1rid 7691  ax-0id 7692  ax-rnegex 7693  ax-precex 7694  ax-cnre 7695  ax-pre-ltirr 7696  ax-pre-ltwlin 7697  ax-pre-lttrn 7698  ax-pre-apti 7699  ax-pre-ltadd 7700  ax-pre-mulgt0 7701  ax-pre-mulext 7702
This theorem depends on definitions:  df-bi 116  df-3or 946  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-ne 2284  df-nel 2379  df-ral 2396  df-rex 2397  df-reu 2398  df-rmo 2399  df-rab 2400  df-v 2660  df-sbc 2881  df-dif 3041  df-un 3043  df-in 3045  df-ss 3052  df-pw 3480  df-sn 3501  df-pr 3502  df-op 3504  df-uni 3705  df-int 3740  df-br 3898  df-opab 3958  df-mpt 3959  df-id 4183  df-po 4186  df-iso 4187  df-xp 4513  df-rel 4514  df-cnv 4515  df-co 4516  df-dm 4517  df-rn 4518  df-iota 5056  df-fun 5093  df-fn 5094  df-f 5095  df-f1 5096  df-fo 5097  df-f1o 5098  df-fv 5099  df-riota 5696  df-ov 5743  df-oprab 5744  df-mpo 5745  df-pnf 7766  df-mnf 7767  df-xr 7768  df-ltxr 7769  df-le 7770  df-sub 7899  df-neg 7900  df-reap 8300  df-ap 8307  df-div 8393  df-inn 8678  df-n0 8929  df-z 9006  df-dvds 11390
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator