ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elfzuz3 GIF version

Theorem elfzuz3 10116
Description: Membership in a finite set of sequential integers implies membership in an upper set of integers. (Contributed by NM, 28-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
elfzuz3 (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ𝐾))

Proof of Theorem elfzuz3
StepHypRef Expression
1 elfzuzb 10113 . 2 (𝐾 ∈ (𝑀...𝑁) ↔ (𝐾 ∈ (ℤ𝑀) ∧ 𝑁 ∈ (ℤ𝐾)))
21simprbi 275 1 (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ𝐾))
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2167  cfv 5259  (class class class)co 5925  cuz 9620  ...cfz 10102
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-setind 4574  ax-cnex 7989  ax-resscn 7990
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-fv 5267  df-ov 5928  df-oprab 5929  df-mpo 5930  df-neg 8219  df-z 9346  df-uz 9621  df-fz 10103
This theorem is referenced by:  elfzel2  10117  elfzle2  10122  peano2fzr  10131  fzsplit2  10144  fzsplit  10145  fznn0sub  10151  fzopth  10155  fzss1  10157  fzss2  10158  fzp1elp1  10169  fzosplit  10272  fzoend  10317  fzofzp1b  10323  seq3fveq2  10586  seqfveq2g  10588  monoord  10596  seqsplitg  10600  iseqf1olemnab  10612  seq3f1olemqsum  10624  seqf1oglem2  10631  seq3id2  10637  seq3z  10639  seqhomog  10641  bcval5  10874  seq3coll  10953  fisum0diag2  11631  pcbc  12547  dvdsppwf1o  15333
  Copyright terms: Public domain W3C validator