ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elfzuz3 GIF version

Theorem elfzuz3 10036
Description: Membership in a finite set of sequential integers implies membership in an upper set of integers. (Contributed by NM, 28-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
elfzuz3 (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ𝐾))

Proof of Theorem elfzuz3
StepHypRef Expression
1 elfzuzb 10033 . 2 (𝐾 ∈ (𝑀...𝑁) ↔ (𝐾 ∈ (ℤ𝑀) ∧ 𝑁 ∈ (ℤ𝐾)))
21simprbi 275 1 (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ𝐾))
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2158  cfv 5228  (class class class)co 5888  cuz 9542  ...cfz 10022
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-14 2161  ax-ext 2169  ax-sep 4133  ax-pow 4186  ax-pr 4221  ax-setind 4548  ax-cnex 7916  ax-resscn 7917
This theorem depends on definitions:  df-bi 117  df-3or 980  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-ral 2470  df-rex 2471  df-rab 2474  df-v 2751  df-sbc 2975  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-br 4016  df-opab 4077  df-mpt 4078  df-id 4305  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-res 4650  df-ima 4651  df-iota 5190  df-fun 5230  df-fn 5231  df-f 5232  df-fv 5236  df-ov 5891  df-oprab 5892  df-mpo 5893  df-neg 8145  df-z 9268  df-uz 9543  df-fz 10023
This theorem is referenced by:  elfzel2  10037  elfzle2  10042  peano2fzr  10051  fzsplit2  10064  fzsplit  10065  fznn0sub  10071  fzopth  10075  fzss1  10077  fzss2  10078  fzp1elp1  10089  fzosplit  10191  fzoend  10236  fzofzp1b  10242  seq3fveq2  10483  monoord  10490  iseqf1olemnab  10502  seq3f1olemqsum  10514  seq3id2  10523  seq3z  10525  bcval5  10757  seq3coll  10836  fisum0diag2  11469  pcbc  12363
  Copyright terms: Public domain W3C validator