![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elfzuz3 | GIF version |
Description: Membership in a finite set of sequential integers implies membership in an upper set of integers. (Contributed by NM, 28-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
Ref | Expression |
---|---|
elfzuz3 | ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ≥‘𝐾)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfzuzb 10033 | . 2 ⊢ (𝐾 ∈ (𝑀...𝑁) ↔ (𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑁 ∈ (ℤ≥‘𝐾))) | |
2 | 1 | simprbi 275 | 1 ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ≥‘𝐾)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2158 ‘cfv 5228 (class class class)co 5888 ℤ≥cuz 9542 ...cfz 10022 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-14 2161 ax-ext 2169 ax-sep 4133 ax-pow 4186 ax-pr 4221 ax-setind 4548 ax-cnex 7916 ax-resscn 7917 |
This theorem depends on definitions: df-bi 117 df-3or 980 df-3an 981 df-tru 1366 df-fal 1369 df-nf 1471 df-sb 1773 df-eu 2039 df-mo 2040 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-ne 2358 df-ral 2470 df-rex 2471 df-rab 2474 df-v 2751 df-sbc 2975 df-dif 3143 df-un 3145 df-in 3147 df-ss 3154 df-pw 3589 df-sn 3610 df-pr 3611 df-op 3613 df-uni 3822 df-br 4016 df-opab 4077 df-mpt 4078 df-id 4305 df-xp 4644 df-rel 4645 df-cnv 4646 df-co 4647 df-dm 4648 df-rn 4649 df-res 4650 df-ima 4651 df-iota 5190 df-fun 5230 df-fn 5231 df-f 5232 df-fv 5236 df-ov 5891 df-oprab 5892 df-mpo 5893 df-neg 8145 df-z 9268 df-uz 9543 df-fz 10023 |
This theorem is referenced by: elfzel2 10037 elfzle2 10042 peano2fzr 10051 fzsplit2 10064 fzsplit 10065 fznn0sub 10071 fzopth 10075 fzss1 10077 fzss2 10078 fzp1elp1 10089 fzosplit 10191 fzoend 10236 fzofzp1b 10242 seq3fveq2 10483 monoord 10490 iseqf1olemnab 10502 seq3f1olemqsum 10514 seq3id2 10523 seq3z 10525 bcval5 10757 seq3coll 10836 fisum0diag2 11469 pcbc 12363 |
Copyright terms: Public domain | W3C validator |