| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fzsplit2 | Unicode version | ||
| Description: Split a finite interval of integers into two parts. (Contributed by Mario Carneiro, 13-Apr-2016.) |
| Ref | Expression |
|---|---|
| fzsplit2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzelz 10217 |
. . . . . 6
| |
| 2 | eluzel2 9723 |
. . . . . . 7
| |
| 3 | 2 | adantl 277 |
. . . . . 6
|
| 4 | zlelttric 9487 |
. . . . . 6
| |
| 5 | 1, 3, 4 | syl2anr 290 |
. . . . 5
|
| 6 | elfzuz 10213 |
. . . . . . 7
| |
| 7 | elfz5 10209 |
. . . . . . 7
| |
| 8 | 6, 3, 7 | syl2anr 290 |
. . . . . 6
|
| 9 | simpl 109 |
. . . . . . . . 9
| |
| 10 | eluzelz 9727 |
. . . . . . . . 9
| |
| 11 | 9, 10 | syl 14 |
. . . . . . . 8
|
| 12 | eluz 9731 |
. . . . . . . 8
| |
| 13 | 11, 1, 12 | syl2an 289 |
. . . . . . 7
|
| 14 | elfzuz3 10214 |
. . . . . . . . 9
| |
| 15 | 14 | adantl 277 |
. . . . . . . 8
|
| 16 | elfzuzb 10211 |
. . . . . . . . 9
| |
| 17 | 16 | rbaib 926 |
. . . . . . . 8
|
| 18 | 15, 17 | syl 14 |
. . . . . . 7
|
| 19 | zltp1le 9497 |
. . . . . . . 8
| |
| 20 | 3, 1, 19 | syl2an 289 |
. . . . . . 7
|
| 21 | 13, 18, 20 | 3bitr4d 220 |
. . . . . 6
|
| 22 | 8, 21 | orbi12d 798 |
. . . . 5
|
| 23 | 5, 22 | mpbird 167 |
. . . 4
|
| 24 | elfzuz 10213 |
. . . . . . 7
| |
| 25 | 24 | adantl 277 |
. . . . . 6
|
| 26 | simpr 110 |
. . . . . . 7
| |
| 27 | elfzuz3 10214 |
. . . . . . 7
| |
| 28 | uztrn 9735 |
. . . . . . 7
| |
| 29 | 26, 27, 28 | syl2an 289 |
. . . . . 6
|
| 30 | elfzuzb 10211 |
. . . . . 6
| |
| 31 | 25, 29, 30 | sylanbrc 417 |
. . . . 5
|
| 32 | elfzuz 10213 |
. . . . . . 7
| |
| 33 | uztrn 9735 |
. . . . . . 7
| |
| 34 | 32, 9, 33 | syl2anr 290 |
. . . . . 6
|
| 35 | elfzuz3 10214 |
. . . . . . 7
| |
| 36 | 35 | adantl 277 |
. . . . . 6
|
| 37 | 34, 36, 30 | sylanbrc 417 |
. . . . 5
|
| 38 | 31, 37 | jaodan 802 |
. . . 4
|
| 39 | 23, 38 | impbida 598 |
. . 3
|
| 40 | elun 3345 |
. . 3
| |
| 41 | 39, 40 | bitr4di 198 |
. 2
|
| 42 | 41 | eqrdv 2227 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-addcom 8095 ax-addass 8097 ax-distr 8099 ax-i2m1 8100 ax-0lt1 8101 ax-0id 8103 ax-rnegex 8104 ax-cnre 8106 ax-pre-ltirr 8107 ax-pre-ltwlin 8108 ax-pre-lttrn 8109 ax-pre-ltadd 8111 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-fv 5325 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-pnf 8179 df-mnf 8180 df-xr 8181 df-ltxr 8182 df-le 8183 df-sub 8315 df-neg 8316 df-inn 9107 df-n0 9366 df-z 9443 df-uz 9719 df-fz 10201 |
| This theorem is referenced by: fzsplit 10243 fzpred 10262 fz0to4untppr 10316 gausslemma2dlem6 15740 |
| Copyright terms: Public domain | W3C validator |