ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fzsplit2 Unicode version

Theorem fzsplit2 10116
Description: Split a finite interval of integers into two parts. (Contributed by Mario Carneiro, 13-Apr-2016.)
Assertion
Ref Expression
fzsplit2  |-  ( ( ( K  +  1 )  e.  ( ZZ>= `  M )  /\  N  e.  ( ZZ>= `  K )
)  ->  ( M ... N )  =  ( ( M ... K
)  u.  ( ( K  +  1 ) ... N ) ) )

Proof of Theorem fzsplit2
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 elfzelz 10091 . . . . . 6  |-  ( x  e.  ( M ... N )  ->  x  e.  ZZ )
2 eluzel2 9597 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  K
)  ->  K  e.  ZZ )
32adantl 277 . . . . . 6  |-  ( ( ( K  +  1 )  e.  ( ZZ>= `  M )  /\  N  e.  ( ZZ>= `  K )
)  ->  K  e.  ZZ )
4 zlelttric 9362 . . . . . 6  |-  ( ( x  e.  ZZ  /\  K  e.  ZZ )  ->  ( x  <_  K  \/  K  <  x ) )
51, 3, 4syl2anr 290 . . . . 5  |-  ( ( ( ( K  + 
1 )  e.  (
ZZ>= `  M )  /\  N  e.  ( ZZ>= `  K ) )  /\  x  e.  ( M ... N ) )  -> 
( x  <_  K  \/  K  <  x ) )
6 elfzuz 10087 . . . . . . 7  |-  ( x  e.  ( M ... N )  ->  x  e.  ( ZZ>= `  M )
)
7 elfz5 10083 . . . . . . 7  |-  ( ( x  e.  ( ZZ>= `  M )  /\  K  e.  ZZ )  ->  (
x  e.  ( M ... K )  <->  x  <_  K ) )
86, 3, 7syl2anr 290 . . . . . 6  |-  ( ( ( ( K  + 
1 )  e.  (
ZZ>= `  M )  /\  N  e.  ( ZZ>= `  K ) )  /\  x  e.  ( M ... N ) )  -> 
( x  e.  ( M ... K )  <-> 
x  <_  K )
)
9 simpl 109 . . . . . . . . 9  |-  ( ( ( K  +  1 )  e.  ( ZZ>= `  M )  /\  N  e.  ( ZZ>= `  K )
)  ->  ( K  +  1 )  e.  ( ZZ>= `  M )
)
10 eluzelz 9601 . . . . . . . . 9  |-  ( ( K  +  1 )  e.  ( ZZ>= `  M
)  ->  ( K  +  1 )  e.  ZZ )
119, 10syl 14 . . . . . . . 8  |-  ( ( ( K  +  1 )  e.  ( ZZ>= `  M )  /\  N  e.  ( ZZ>= `  K )
)  ->  ( K  +  1 )  e.  ZZ )
12 eluz 9605 . . . . . . . 8  |-  ( ( ( K  +  1 )  e.  ZZ  /\  x  e.  ZZ )  ->  ( x  e.  (
ZZ>= `  ( K  + 
1 ) )  <->  ( K  +  1 )  <_  x ) )
1311, 1, 12syl2an 289 . . . . . . 7  |-  ( ( ( ( K  + 
1 )  e.  (
ZZ>= `  M )  /\  N  e.  ( ZZ>= `  K ) )  /\  x  e.  ( M ... N ) )  -> 
( x  e.  (
ZZ>= `  ( K  + 
1 ) )  <->  ( K  +  1 )  <_  x ) )
14 elfzuz3 10088 . . . . . . . . 9  |-  ( x  e.  ( M ... N )  ->  N  e.  ( ZZ>= `  x )
)
1514adantl 277 . . . . . . . 8  |-  ( ( ( ( K  + 
1 )  e.  (
ZZ>= `  M )  /\  N  e.  ( ZZ>= `  K ) )  /\  x  e.  ( M ... N ) )  ->  N  e.  ( ZZ>= `  x ) )
16 elfzuzb 10085 . . . . . . . . 9  |-  ( x  e.  ( ( K  +  1 ) ... N )  <->  ( x  e.  ( ZZ>= `  ( K  +  1 ) )  /\  N  e.  (
ZZ>= `  x ) ) )
1716rbaib 922 . . . . . . . 8  |-  ( N  e.  ( ZZ>= `  x
)  ->  ( x  e.  ( ( K  + 
1 ) ... N
)  <->  x  e.  ( ZZ>=
`  ( K  + 
1 ) ) ) )
1815, 17syl 14 . . . . . . 7  |-  ( ( ( ( K  + 
1 )  e.  (
ZZ>= `  M )  /\  N  e.  ( ZZ>= `  K ) )  /\  x  e.  ( M ... N ) )  -> 
( x  e.  ( ( K  +  1 ) ... N )  <-> 
x  e.  ( ZZ>= `  ( K  +  1
) ) ) )
19 zltp1le 9371 . . . . . . . 8  |-  ( ( K  e.  ZZ  /\  x  e.  ZZ )  ->  ( K  <  x  <->  ( K  +  1 )  <_  x ) )
203, 1, 19syl2an 289 . . . . . . 7  |-  ( ( ( ( K  + 
1 )  e.  (
ZZ>= `  M )  /\  N  e.  ( ZZ>= `  K ) )  /\  x  e.  ( M ... N ) )  -> 
( K  <  x  <->  ( K  +  1 )  <_  x ) )
2113, 18, 203bitr4d 220 . . . . . 6  |-  ( ( ( ( K  + 
1 )  e.  (
ZZ>= `  M )  /\  N  e.  ( ZZ>= `  K ) )  /\  x  e.  ( M ... N ) )  -> 
( x  e.  ( ( K  +  1 ) ... N )  <-> 
K  <  x )
)
228, 21orbi12d 794 . . . . 5  |-  ( ( ( ( K  + 
1 )  e.  (
ZZ>= `  M )  /\  N  e.  ( ZZ>= `  K ) )  /\  x  e.  ( M ... N ) )  -> 
( ( x  e.  ( M ... K
)  \/  x  e.  ( ( K  + 
1 ) ... N
) )  <->  ( x  <_  K  \/  K  < 
x ) ) )
235, 22mpbird 167 . . . 4  |-  ( ( ( ( K  + 
1 )  e.  (
ZZ>= `  M )  /\  N  e.  ( ZZ>= `  K ) )  /\  x  e.  ( M ... N ) )  -> 
( x  e.  ( M ... K )  \/  x  e.  ( ( K  +  1 ) ... N ) ) )
24 elfzuz 10087 . . . . . . 7  |-  ( x  e.  ( M ... K )  ->  x  e.  ( ZZ>= `  M )
)
2524adantl 277 . . . . . 6  |-  ( ( ( ( K  + 
1 )  e.  (
ZZ>= `  M )  /\  N  e.  ( ZZ>= `  K ) )  /\  x  e.  ( M ... K ) )  ->  x  e.  ( ZZ>= `  M ) )
26 simpr 110 . . . . . . 7  |-  ( ( ( K  +  1 )  e.  ( ZZ>= `  M )  /\  N  e.  ( ZZ>= `  K )
)  ->  N  e.  ( ZZ>= `  K )
)
27 elfzuz3 10088 . . . . . . 7  |-  ( x  e.  ( M ... K )  ->  K  e.  ( ZZ>= `  x )
)
28 uztrn 9609 . . . . . . 7  |-  ( ( N  e.  ( ZZ>= `  K )  /\  K  e.  ( ZZ>= `  x )
)  ->  N  e.  ( ZZ>= `  x )
)
2926, 27, 28syl2an 289 . . . . . 6  |-  ( ( ( ( K  + 
1 )  e.  (
ZZ>= `  M )  /\  N  e.  ( ZZ>= `  K ) )  /\  x  e.  ( M ... K ) )  ->  N  e.  ( ZZ>= `  x ) )
30 elfzuzb 10085 . . . . . 6  |-  ( x  e.  ( M ... N )  <->  ( x  e.  ( ZZ>= `  M )  /\  N  e.  ( ZZ>=
`  x ) ) )
3125, 29, 30sylanbrc 417 . . . . 5  |-  ( ( ( ( K  + 
1 )  e.  (
ZZ>= `  M )  /\  N  e.  ( ZZ>= `  K ) )  /\  x  e.  ( M ... K ) )  ->  x  e.  ( M ... N ) )
32 elfzuz 10087 . . . . . . 7  |-  ( x  e.  ( ( K  +  1 ) ... N )  ->  x  e.  ( ZZ>= `  ( K  +  1 ) ) )
33 uztrn 9609 . . . . . . 7  |-  ( ( x  e.  ( ZZ>= `  ( K  +  1
) )  /\  ( K  +  1 )  e.  ( ZZ>= `  M
) )  ->  x  e.  ( ZZ>= `  M )
)
3432, 9, 33syl2anr 290 . . . . . 6  |-  ( ( ( ( K  + 
1 )  e.  (
ZZ>= `  M )  /\  N  e.  ( ZZ>= `  K ) )  /\  x  e.  ( ( K  +  1 ) ... N ) )  ->  x  e.  (
ZZ>= `  M ) )
35 elfzuz3 10088 . . . . . . 7  |-  ( x  e.  ( ( K  +  1 ) ... N )  ->  N  e.  ( ZZ>= `  x )
)
3635adantl 277 . . . . . 6  |-  ( ( ( ( K  + 
1 )  e.  (
ZZ>= `  M )  /\  N  e.  ( ZZ>= `  K ) )  /\  x  e.  ( ( K  +  1 ) ... N ) )  ->  N  e.  (
ZZ>= `  x ) )
3734, 36, 30sylanbrc 417 . . . . 5  |-  ( ( ( ( K  + 
1 )  e.  (
ZZ>= `  M )  /\  N  e.  ( ZZ>= `  K ) )  /\  x  e.  ( ( K  +  1 ) ... N ) )  ->  x  e.  ( M ... N ) )
3831, 37jaodan 798 . . . 4  |-  ( ( ( ( K  + 
1 )  e.  (
ZZ>= `  M )  /\  N  e.  ( ZZ>= `  K ) )  /\  ( x  e.  ( M ... K )  \/  x  e.  ( ( K  +  1 ) ... N ) ) )  ->  x  e.  ( M ... N ) )
3923, 38impbida 596 . . 3  |-  ( ( ( K  +  1 )  e.  ( ZZ>= `  M )  /\  N  e.  ( ZZ>= `  K )
)  ->  ( x  e.  ( M ... N
)  <->  ( x  e.  ( M ... K
)  \/  x  e.  ( ( K  + 
1 ) ... N
) ) ) )
40 elun 3300 . . 3  |-  ( x  e.  ( ( M ... K )  u.  ( ( K  + 
1 ) ... N
) )  <->  ( x  e.  ( M ... K
)  \/  x  e.  ( ( K  + 
1 ) ... N
) ) )
4139, 40bitr4di 198 . 2  |-  ( ( ( K  +  1 )  e.  ( ZZ>= `  M )  /\  N  e.  ( ZZ>= `  K )
)  ->  ( x  e.  ( M ... N
)  <->  x  e.  (
( M ... K
)  u.  ( ( K  +  1 ) ... N ) ) ) )
4241eqrdv 2191 1  |-  ( ( ( K  +  1 )  e.  ( ZZ>= `  M )  /\  N  e.  ( ZZ>= `  K )
)  ->  ( M ... N )  =  ( ( M ... K
)  u.  ( ( K  +  1 ) ... N ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709    = wceq 1364    e. wcel 2164    u. cun 3151   class class class wbr 4029   ` cfv 5254  (class class class)co 5918   1c1 7873    + caddc 7875    < clt 8054    <_ cle 8055   ZZcz 9317   ZZ>=cuz 9592   ...cfz 10074
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-inn 8983  df-n0 9241  df-z 9318  df-uz 9593  df-fz 10075
This theorem is referenced by:  fzsplit  10117  fzpred  10136  fz0to4untppr  10190  gausslemma2dlem6  15183
  Copyright terms: Public domain W3C validator