| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fzsplit2 | Unicode version | ||
| Description: Split a finite interval of integers into two parts. (Contributed by Mario Carneiro, 13-Apr-2016.) |
| Ref | Expression |
|---|---|
| fzsplit2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzelz 10146 |
. . . . . 6
| |
| 2 | eluzel2 9652 |
. . . . . . 7
| |
| 3 | 2 | adantl 277 |
. . . . . 6
|
| 4 | zlelttric 9416 |
. . . . . 6
| |
| 5 | 1, 3, 4 | syl2anr 290 |
. . . . 5
|
| 6 | elfzuz 10142 |
. . . . . . 7
| |
| 7 | elfz5 10138 |
. . . . . . 7
| |
| 8 | 6, 3, 7 | syl2anr 290 |
. . . . . 6
|
| 9 | simpl 109 |
. . . . . . . . 9
| |
| 10 | eluzelz 9656 |
. . . . . . . . 9
| |
| 11 | 9, 10 | syl 14 |
. . . . . . . 8
|
| 12 | eluz 9660 |
. . . . . . . 8
| |
| 13 | 11, 1, 12 | syl2an 289 |
. . . . . . 7
|
| 14 | elfzuz3 10143 |
. . . . . . . . 9
| |
| 15 | 14 | adantl 277 |
. . . . . . . 8
|
| 16 | elfzuzb 10140 |
. . . . . . . . 9
| |
| 17 | 16 | rbaib 922 |
. . . . . . . 8
|
| 18 | 15, 17 | syl 14 |
. . . . . . 7
|
| 19 | zltp1le 9426 |
. . . . . . . 8
| |
| 20 | 3, 1, 19 | syl2an 289 |
. . . . . . 7
|
| 21 | 13, 18, 20 | 3bitr4d 220 |
. . . . . 6
|
| 22 | 8, 21 | orbi12d 794 |
. . . . 5
|
| 23 | 5, 22 | mpbird 167 |
. . . 4
|
| 24 | elfzuz 10142 |
. . . . . . 7
| |
| 25 | 24 | adantl 277 |
. . . . . 6
|
| 26 | simpr 110 |
. . . . . . 7
| |
| 27 | elfzuz3 10143 |
. . . . . . 7
| |
| 28 | uztrn 9664 |
. . . . . . 7
| |
| 29 | 26, 27, 28 | syl2an 289 |
. . . . . 6
|
| 30 | elfzuzb 10140 |
. . . . . 6
| |
| 31 | 25, 29, 30 | sylanbrc 417 |
. . . . 5
|
| 32 | elfzuz 10142 |
. . . . . . 7
| |
| 33 | uztrn 9664 |
. . . . . . 7
| |
| 34 | 32, 9, 33 | syl2anr 290 |
. . . . . 6
|
| 35 | elfzuz3 10143 |
. . . . . . 7
| |
| 36 | 35 | adantl 277 |
. . . . . 6
|
| 37 | 34, 36, 30 | sylanbrc 417 |
. . . . 5
|
| 38 | 31, 37 | jaodan 798 |
. . . 4
|
| 39 | 23, 38 | impbida 596 |
. . 3
|
| 40 | elun 3313 |
. . 3
| |
| 41 | 39, 40 | bitr4di 198 |
. 2
|
| 42 | 41 | eqrdv 2202 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-cnex 8015 ax-resscn 8016 ax-1cn 8017 ax-1re 8018 ax-icn 8019 ax-addcl 8020 ax-addrcl 8021 ax-mulcl 8022 ax-addcom 8024 ax-addass 8026 ax-distr 8028 ax-i2m1 8029 ax-0lt1 8030 ax-0id 8032 ax-rnegex 8033 ax-cnre 8035 ax-pre-ltirr 8036 ax-pre-ltwlin 8037 ax-pre-lttrn 8038 ax-pre-ltadd 8040 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rab 2492 df-v 2773 df-sbc 2998 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4339 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-fv 5278 df-riota 5898 df-ov 5946 df-oprab 5947 df-mpo 5948 df-pnf 8108 df-mnf 8109 df-xr 8110 df-ltxr 8111 df-le 8112 df-sub 8244 df-neg 8245 df-inn 9036 df-n0 9295 df-z 9372 df-uz 9648 df-fz 10130 |
| This theorem is referenced by: fzsplit 10172 fzpred 10191 fz0to4untppr 10245 gausslemma2dlem6 15486 |
| Copyright terms: Public domain | W3C validator |