ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fzsplit2 Unicode version

Theorem fzsplit2 9953
Description: Split a finite interval of integers into two parts. (Contributed by Mario Carneiro, 13-Apr-2016.)
Assertion
Ref Expression
fzsplit2  |-  ( ( ( K  +  1 )  e.  ( ZZ>= `  M )  /\  N  e.  ( ZZ>= `  K )
)  ->  ( M ... N )  =  ( ( M ... K
)  u.  ( ( K  +  1 ) ... N ) ) )

Proof of Theorem fzsplit2
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 elfzelz 9929 . . . . . 6  |-  ( x  e.  ( M ... N )  ->  x  e.  ZZ )
2 eluzel2 9445 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  K
)  ->  K  e.  ZZ )
32adantl 275 . . . . . 6  |-  ( ( ( K  +  1 )  e.  ( ZZ>= `  M )  /\  N  e.  ( ZZ>= `  K )
)  ->  K  e.  ZZ )
4 zlelttric 9213 . . . . . 6  |-  ( ( x  e.  ZZ  /\  K  e.  ZZ )  ->  ( x  <_  K  \/  K  <  x ) )
51, 3, 4syl2anr 288 . . . . 5  |-  ( ( ( ( K  + 
1 )  e.  (
ZZ>= `  M )  /\  N  e.  ( ZZ>= `  K ) )  /\  x  e.  ( M ... N ) )  -> 
( x  <_  K  \/  K  <  x ) )
6 elfzuz 9925 . . . . . . 7  |-  ( x  e.  ( M ... N )  ->  x  e.  ( ZZ>= `  M )
)
7 elfz5 9921 . . . . . . 7  |-  ( ( x  e.  ( ZZ>= `  M )  /\  K  e.  ZZ )  ->  (
x  e.  ( M ... K )  <->  x  <_  K ) )
86, 3, 7syl2anr 288 . . . . . 6  |-  ( ( ( ( K  + 
1 )  e.  (
ZZ>= `  M )  /\  N  e.  ( ZZ>= `  K ) )  /\  x  e.  ( M ... N ) )  -> 
( x  e.  ( M ... K )  <-> 
x  <_  K )
)
9 simpl 108 . . . . . . . . 9  |-  ( ( ( K  +  1 )  e.  ( ZZ>= `  M )  /\  N  e.  ( ZZ>= `  K )
)  ->  ( K  +  1 )  e.  ( ZZ>= `  M )
)
10 eluzelz 9449 . . . . . . . . 9  |-  ( ( K  +  1 )  e.  ( ZZ>= `  M
)  ->  ( K  +  1 )  e.  ZZ )
119, 10syl 14 . . . . . . . 8  |-  ( ( ( K  +  1 )  e.  ( ZZ>= `  M )  /\  N  e.  ( ZZ>= `  K )
)  ->  ( K  +  1 )  e.  ZZ )
12 eluz 9453 . . . . . . . 8  |-  ( ( ( K  +  1 )  e.  ZZ  /\  x  e.  ZZ )  ->  ( x  e.  (
ZZ>= `  ( K  + 
1 ) )  <->  ( K  +  1 )  <_  x ) )
1311, 1, 12syl2an 287 . . . . . . 7  |-  ( ( ( ( K  + 
1 )  e.  (
ZZ>= `  M )  /\  N  e.  ( ZZ>= `  K ) )  /\  x  e.  ( M ... N ) )  -> 
( x  e.  (
ZZ>= `  ( K  + 
1 ) )  <->  ( K  +  1 )  <_  x ) )
14 elfzuz3 9926 . . . . . . . . 9  |-  ( x  e.  ( M ... N )  ->  N  e.  ( ZZ>= `  x )
)
1514adantl 275 . . . . . . . 8  |-  ( ( ( ( K  + 
1 )  e.  (
ZZ>= `  M )  /\  N  e.  ( ZZ>= `  K ) )  /\  x  e.  ( M ... N ) )  ->  N  e.  ( ZZ>= `  x ) )
16 elfzuzb 9923 . . . . . . . . 9  |-  ( x  e.  ( ( K  +  1 ) ... N )  <->  ( x  e.  ( ZZ>= `  ( K  +  1 ) )  /\  N  e.  (
ZZ>= `  x ) ) )
1716rbaib 907 . . . . . . . 8  |-  ( N  e.  ( ZZ>= `  x
)  ->  ( x  e.  ( ( K  + 
1 ) ... N
)  <->  x  e.  ( ZZ>=
`  ( K  + 
1 ) ) ) )
1815, 17syl 14 . . . . . . 7  |-  ( ( ( ( K  + 
1 )  e.  (
ZZ>= `  M )  /\  N  e.  ( ZZ>= `  K ) )  /\  x  e.  ( M ... N ) )  -> 
( x  e.  ( ( K  +  1 ) ... N )  <-> 
x  e.  ( ZZ>= `  ( K  +  1
) ) ) )
19 zltp1le 9222 . . . . . . . 8  |-  ( ( K  e.  ZZ  /\  x  e.  ZZ )  ->  ( K  <  x  <->  ( K  +  1 )  <_  x ) )
203, 1, 19syl2an 287 . . . . . . 7  |-  ( ( ( ( K  + 
1 )  e.  (
ZZ>= `  M )  /\  N  e.  ( ZZ>= `  K ) )  /\  x  e.  ( M ... N ) )  -> 
( K  <  x  <->  ( K  +  1 )  <_  x ) )
2113, 18, 203bitr4d 219 . . . . . 6  |-  ( ( ( ( K  + 
1 )  e.  (
ZZ>= `  M )  /\  N  e.  ( ZZ>= `  K ) )  /\  x  e.  ( M ... N ) )  -> 
( x  e.  ( ( K  +  1 ) ... N )  <-> 
K  <  x )
)
228, 21orbi12d 783 . . . . 5  |-  ( ( ( ( K  + 
1 )  e.  (
ZZ>= `  M )  /\  N  e.  ( ZZ>= `  K ) )  /\  x  e.  ( M ... N ) )  -> 
( ( x  e.  ( M ... K
)  \/  x  e.  ( ( K  + 
1 ) ... N
) )  <->  ( x  <_  K  \/  K  < 
x ) ) )
235, 22mpbird 166 . . . 4  |-  ( ( ( ( K  + 
1 )  e.  (
ZZ>= `  M )  /\  N  e.  ( ZZ>= `  K ) )  /\  x  e.  ( M ... N ) )  -> 
( x  e.  ( M ... K )  \/  x  e.  ( ( K  +  1 ) ... N ) ) )
24 elfzuz 9925 . . . . . . 7  |-  ( x  e.  ( M ... K )  ->  x  e.  ( ZZ>= `  M )
)
2524adantl 275 . . . . . 6  |-  ( ( ( ( K  + 
1 )  e.  (
ZZ>= `  M )  /\  N  e.  ( ZZ>= `  K ) )  /\  x  e.  ( M ... K ) )  ->  x  e.  ( ZZ>= `  M ) )
26 simpr 109 . . . . . . 7  |-  ( ( ( K  +  1 )  e.  ( ZZ>= `  M )  /\  N  e.  ( ZZ>= `  K )
)  ->  N  e.  ( ZZ>= `  K )
)
27 elfzuz3 9926 . . . . . . 7  |-  ( x  e.  ( M ... K )  ->  K  e.  ( ZZ>= `  x )
)
28 uztrn 9456 . . . . . . 7  |-  ( ( N  e.  ( ZZ>= `  K )  /\  K  e.  ( ZZ>= `  x )
)  ->  N  e.  ( ZZ>= `  x )
)
2926, 27, 28syl2an 287 . . . . . 6  |-  ( ( ( ( K  + 
1 )  e.  (
ZZ>= `  M )  /\  N  e.  ( ZZ>= `  K ) )  /\  x  e.  ( M ... K ) )  ->  N  e.  ( ZZ>= `  x ) )
30 elfzuzb 9923 . . . . . 6  |-  ( x  e.  ( M ... N )  <->  ( x  e.  ( ZZ>= `  M )  /\  N  e.  ( ZZ>=
`  x ) ) )
3125, 29, 30sylanbrc 414 . . . . 5  |-  ( ( ( ( K  + 
1 )  e.  (
ZZ>= `  M )  /\  N  e.  ( ZZ>= `  K ) )  /\  x  e.  ( M ... K ) )  ->  x  e.  ( M ... N ) )
32 elfzuz 9925 . . . . . . 7  |-  ( x  e.  ( ( K  +  1 ) ... N )  ->  x  e.  ( ZZ>= `  ( K  +  1 ) ) )
33 uztrn 9456 . . . . . . 7  |-  ( ( x  e.  ( ZZ>= `  ( K  +  1
) )  /\  ( K  +  1 )  e.  ( ZZ>= `  M
) )  ->  x  e.  ( ZZ>= `  M )
)
3432, 9, 33syl2anr 288 . . . . . 6  |-  ( ( ( ( K  + 
1 )  e.  (
ZZ>= `  M )  /\  N  e.  ( ZZ>= `  K ) )  /\  x  e.  ( ( K  +  1 ) ... N ) )  ->  x  e.  (
ZZ>= `  M ) )
35 elfzuz3 9926 . . . . . . 7  |-  ( x  e.  ( ( K  +  1 ) ... N )  ->  N  e.  ( ZZ>= `  x )
)
3635adantl 275 . . . . . 6  |-  ( ( ( ( K  + 
1 )  e.  (
ZZ>= `  M )  /\  N  e.  ( ZZ>= `  K ) )  /\  x  e.  ( ( K  +  1 ) ... N ) )  ->  N  e.  (
ZZ>= `  x ) )
3734, 36, 30sylanbrc 414 . . . . 5  |-  ( ( ( ( K  + 
1 )  e.  (
ZZ>= `  M )  /\  N  e.  ( ZZ>= `  K ) )  /\  x  e.  ( ( K  +  1 ) ... N ) )  ->  x  e.  ( M ... N ) )
3831, 37jaodan 787 . . . 4  |-  ( ( ( ( K  + 
1 )  e.  (
ZZ>= `  M )  /\  N  e.  ( ZZ>= `  K ) )  /\  ( x  e.  ( M ... K )  \/  x  e.  ( ( K  +  1 ) ... N ) ) )  ->  x  e.  ( M ... N ) )
3923, 38impbida 586 . . 3  |-  ( ( ( K  +  1 )  e.  ( ZZ>= `  M )  /\  N  e.  ( ZZ>= `  K )
)  ->  ( x  e.  ( M ... N
)  <->  ( x  e.  ( M ... K
)  \/  x  e.  ( ( K  + 
1 ) ... N
) ) ) )
40 elun 3248 . . 3  |-  ( x  e.  ( ( M ... K )  u.  ( ( K  + 
1 ) ... N
) )  <->  ( x  e.  ( M ... K
)  \/  x  e.  ( ( K  + 
1 ) ... N
) ) )
4139, 40bitr4di 197 . 2  |-  ( ( ( K  +  1 )  e.  ( ZZ>= `  M )  /\  N  e.  ( ZZ>= `  K )
)  ->  ( x  e.  ( M ... N
)  <->  x  e.  (
( M ... K
)  u.  ( ( K  +  1 ) ... N ) ) ) )
4241eqrdv 2155 1  |-  ( ( ( K  +  1 )  e.  ( ZZ>= `  M )  /\  N  e.  ( ZZ>= `  K )
)  ->  ( M ... N )  =  ( ( M ... K
)  u.  ( ( K  +  1 ) ... N ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 698    = wceq 1335    e. wcel 2128    u. cun 3100   class class class wbr 3966   ` cfv 5171  (class class class)co 5825   1c1 7734    + caddc 7736    < clt 7913    <_ cle 7914   ZZcz 9168   ZZ>=cuz 9440   ...cfz 9913
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-sep 4083  ax-pow 4136  ax-pr 4170  ax-un 4394  ax-setind 4497  ax-cnex 7824  ax-resscn 7825  ax-1cn 7826  ax-1re 7827  ax-icn 7828  ax-addcl 7829  ax-addrcl 7830  ax-mulcl 7831  ax-addcom 7833  ax-addass 7835  ax-distr 7837  ax-i2m1 7838  ax-0lt1 7839  ax-0id 7841  ax-rnegex 7842  ax-cnre 7844  ax-pre-ltirr 7845  ax-pre-ltwlin 7846  ax-pre-lttrn 7847  ax-pre-ltadd 7849
This theorem depends on definitions:  df-bi 116  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-reu 2442  df-rab 2444  df-v 2714  df-sbc 2938  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3774  df-int 3809  df-br 3967  df-opab 4027  df-mpt 4028  df-id 4254  df-xp 4593  df-rel 4594  df-cnv 4595  df-co 4596  df-dm 4597  df-rn 4598  df-res 4599  df-ima 4600  df-iota 5136  df-fun 5173  df-fn 5174  df-f 5175  df-fv 5179  df-riota 5781  df-ov 5828  df-oprab 5829  df-mpo 5830  df-pnf 7915  df-mnf 7916  df-xr 7917  df-ltxr 7918  df-le 7919  df-sub 8049  df-neg 8050  df-inn 8835  df-n0 9092  df-z 9169  df-uz 9441  df-fz 9914
This theorem is referenced by:  fzsplit  9954  fzpred  9973  fz0to4untppr  10027
  Copyright terms: Public domain W3C validator