ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fzsplit2 Unicode version

Theorem fzsplit2 10202
Description: Split a finite interval of integers into two parts. (Contributed by Mario Carneiro, 13-Apr-2016.)
Assertion
Ref Expression
fzsplit2  |-  ( ( ( K  +  1 )  e.  ( ZZ>= `  M )  /\  N  e.  ( ZZ>= `  K )
)  ->  ( M ... N )  =  ( ( M ... K
)  u.  ( ( K  +  1 ) ... N ) ) )

Proof of Theorem fzsplit2
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 elfzelz 10177 . . . . . 6  |-  ( x  e.  ( M ... N )  ->  x  e.  ZZ )
2 eluzel2 9683 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  K
)  ->  K  e.  ZZ )
32adantl 277 . . . . . 6  |-  ( ( ( K  +  1 )  e.  ( ZZ>= `  M )  /\  N  e.  ( ZZ>= `  K )
)  ->  K  e.  ZZ )
4 zlelttric 9447 . . . . . 6  |-  ( ( x  e.  ZZ  /\  K  e.  ZZ )  ->  ( x  <_  K  \/  K  <  x ) )
51, 3, 4syl2anr 290 . . . . 5  |-  ( ( ( ( K  + 
1 )  e.  (
ZZ>= `  M )  /\  N  e.  ( ZZ>= `  K ) )  /\  x  e.  ( M ... N ) )  -> 
( x  <_  K  \/  K  <  x ) )
6 elfzuz 10173 . . . . . . 7  |-  ( x  e.  ( M ... N )  ->  x  e.  ( ZZ>= `  M )
)
7 elfz5 10169 . . . . . . 7  |-  ( ( x  e.  ( ZZ>= `  M )  /\  K  e.  ZZ )  ->  (
x  e.  ( M ... K )  <->  x  <_  K ) )
86, 3, 7syl2anr 290 . . . . . 6  |-  ( ( ( ( K  + 
1 )  e.  (
ZZ>= `  M )  /\  N  e.  ( ZZ>= `  K ) )  /\  x  e.  ( M ... N ) )  -> 
( x  e.  ( M ... K )  <-> 
x  <_  K )
)
9 simpl 109 . . . . . . . . 9  |-  ( ( ( K  +  1 )  e.  ( ZZ>= `  M )  /\  N  e.  ( ZZ>= `  K )
)  ->  ( K  +  1 )  e.  ( ZZ>= `  M )
)
10 eluzelz 9687 . . . . . . . . 9  |-  ( ( K  +  1 )  e.  ( ZZ>= `  M
)  ->  ( K  +  1 )  e.  ZZ )
119, 10syl 14 . . . . . . . 8  |-  ( ( ( K  +  1 )  e.  ( ZZ>= `  M )  /\  N  e.  ( ZZ>= `  K )
)  ->  ( K  +  1 )  e.  ZZ )
12 eluz 9691 . . . . . . . 8  |-  ( ( ( K  +  1 )  e.  ZZ  /\  x  e.  ZZ )  ->  ( x  e.  (
ZZ>= `  ( K  + 
1 ) )  <->  ( K  +  1 )  <_  x ) )
1311, 1, 12syl2an 289 . . . . . . 7  |-  ( ( ( ( K  + 
1 )  e.  (
ZZ>= `  M )  /\  N  e.  ( ZZ>= `  K ) )  /\  x  e.  ( M ... N ) )  -> 
( x  e.  (
ZZ>= `  ( K  + 
1 ) )  <->  ( K  +  1 )  <_  x ) )
14 elfzuz3 10174 . . . . . . . . 9  |-  ( x  e.  ( M ... N )  ->  N  e.  ( ZZ>= `  x )
)
1514adantl 277 . . . . . . . 8  |-  ( ( ( ( K  + 
1 )  e.  (
ZZ>= `  M )  /\  N  e.  ( ZZ>= `  K ) )  /\  x  e.  ( M ... N ) )  ->  N  e.  ( ZZ>= `  x ) )
16 elfzuzb 10171 . . . . . . . . 9  |-  ( x  e.  ( ( K  +  1 ) ... N )  <->  ( x  e.  ( ZZ>= `  ( K  +  1 ) )  /\  N  e.  (
ZZ>= `  x ) ) )
1716rbaib 923 . . . . . . . 8  |-  ( N  e.  ( ZZ>= `  x
)  ->  ( x  e.  ( ( K  + 
1 ) ... N
)  <->  x  e.  ( ZZ>=
`  ( K  + 
1 ) ) ) )
1815, 17syl 14 . . . . . . 7  |-  ( ( ( ( K  + 
1 )  e.  (
ZZ>= `  M )  /\  N  e.  ( ZZ>= `  K ) )  /\  x  e.  ( M ... N ) )  -> 
( x  e.  ( ( K  +  1 ) ... N )  <-> 
x  e.  ( ZZ>= `  ( K  +  1
) ) ) )
19 zltp1le 9457 . . . . . . . 8  |-  ( ( K  e.  ZZ  /\  x  e.  ZZ )  ->  ( K  <  x  <->  ( K  +  1 )  <_  x ) )
203, 1, 19syl2an 289 . . . . . . 7  |-  ( ( ( ( K  + 
1 )  e.  (
ZZ>= `  M )  /\  N  e.  ( ZZ>= `  K ) )  /\  x  e.  ( M ... N ) )  -> 
( K  <  x  <->  ( K  +  1 )  <_  x ) )
2113, 18, 203bitr4d 220 . . . . . 6  |-  ( ( ( ( K  + 
1 )  e.  (
ZZ>= `  M )  /\  N  e.  ( ZZ>= `  K ) )  /\  x  e.  ( M ... N ) )  -> 
( x  e.  ( ( K  +  1 ) ... N )  <-> 
K  <  x )
)
228, 21orbi12d 795 . . . . 5  |-  ( ( ( ( K  + 
1 )  e.  (
ZZ>= `  M )  /\  N  e.  ( ZZ>= `  K ) )  /\  x  e.  ( M ... N ) )  -> 
( ( x  e.  ( M ... K
)  \/  x  e.  ( ( K  + 
1 ) ... N
) )  <->  ( x  <_  K  \/  K  < 
x ) ) )
235, 22mpbird 167 . . . 4  |-  ( ( ( ( K  + 
1 )  e.  (
ZZ>= `  M )  /\  N  e.  ( ZZ>= `  K ) )  /\  x  e.  ( M ... N ) )  -> 
( x  e.  ( M ... K )  \/  x  e.  ( ( K  +  1 ) ... N ) ) )
24 elfzuz 10173 . . . . . . 7  |-  ( x  e.  ( M ... K )  ->  x  e.  ( ZZ>= `  M )
)
2524adantl 277 . . . . . 6  |-  ( ( ( ( K  + 
1 )  e.  (
ZZ>= `  M )  /\  N  e.  ( ZZ>= `  K ) )  /\  x  e.  ( M ... K ) )  ->  x  e.  ( ZZ>= `  M ) )
26 simpr 110 . . . . . . 7  |-  ( ( ( K  +  1 )  e.  ( ZZ>= `  M )  /\  N  e.  ( ZZ>= `  K )
)  ->  N  e.  ( ZZ>= `  K )
)
27 elfzuz3 10174 . . . . . . 7  |-  ( x  e.  ( M ... K )  ->  K  e.  ( ZZ>= `  x )
)
28 uztrn 9695 . . . . . . 7  |-  ( ( N  e.  ( ZZ>= `  K )  /\  K  e.  ( ZZ>= `  x )
)  ->  N  e.  ( ZZ>= `  x )
)
2926, 27, 28syl2an 289 . . . . . 6  |-  ( ( ( ( K  + 
1 )  e.  (
ZZ>= `  M )  /\  N  e.  ( ZZ>= `  K ) )  /\  x  e.  ( M ... K ) )  ->  N  e.  ( ZZ>= `  x ) )
30 elfzuzb 10171 . . . . . 6  |-  ( x  e.  ( M ... N )  <->  ( x  e.  ( ZZ>= `  M )  /\  N  e.  ( ZZ>=
`  x ) ) )
3125, 29, 30sylanbrc 417 . . . . 5  |-  ( ( ( ( K  + 
1 )  e.  (
ZZ>= `  M )  /\  N  e.  ( ZZ>= `  K ) )  /\  x  e.  ( M ... K ) )  ->  x  e.  ( M ... N ) )
32 elfzuz 10173 . . . . . . 7  |-  ( x  e.  ( ( K  +  1 ) ... N )  ->  x  e.  ( ZZ>= `  ( K  +  1 ) ) )
33 uztrn 9695 . . . . . . 7  |-  ( ( x  e.  ( ZZ>= `  ( K  +  1
) )  /\  ( K  +  1 )  e.  ( ZZ>= `  M
) )  ->  x  e.  ( ZZ>= `  M )
)
3432, 9, 33syl2anr 290 . . . . . 6  |-  ( ( ( ( K  + 
1 )  e.  (
ZZ>= `  M )  /\  N  e.  ( ZZ>= `  K ) )  /\  x  e.  ( ( K  +  1 ) ... N ) )  ->  x  e.  (
ZZ>= `  M ) )
35 elfzuz3 10174 . . . . . . 7  |-  ( x  e.  ( ( K  +  1 ) ... N )  ->  N  e.  ( ZZ>= `  x )
)
3635adantl 277 . . . . . 6  |-  ( ( ( ( K  + 
1 )  e.  (
ZZ>= `  M )  /\  N  e.  ( ZZ>= `  K ) )  /\  x  e.  ( ( K  +  1 ) ... N ) )  ->  N  e.  (
ZZ>= `  x ) )
3734, 36, 30sylanbrc 417 . . . . 5  |-  ( ( ( ( K  + 
1 )  e.  (
ZZ>= `  M )  /\  N  e.  ( ZZ>= `  K ) )  /\  x  e.  ( ( K  +  1 ) ... N ) )  ->  x  e.  ( M ... N ) )
3831, 37jaodan 799 . . . 4  |-  ( ( ( ( K  + 
1 )  e.  (
ZZ>= `  M )  /\  N  e.  ( ZZ>= `  K ) )  /\  ( x  e.  ( M ... K )  \/  x  e.  ( ( K  +  1 ) ... N ) ) )  ->  x  e.  ( M ... N ) )
3923, 38impbida 596 . . 3  |-  ( ( ( K  +  1 )  e.  ( ZZ>= `  M )  /\  N  e.  ( ZZ>= `  K )
)  ->  ( x  e.  ( M ... N
)  <->  ( x  e.  ( M ... K
)  \/  x  e.  ( ( K  + 
1 ) ... N
) ) ) )
40 elun 3318 . . 3  |-  ( x  e.  ( ( M ... K )  u.  ( ( K  + 
1 ) ... N
) )  <->  ( x  e.  ( M ... K
)  \/  x  e.  ( ( K  + 
1 ) ... N
) ) )
4139, 40bitr4di 198 . 2  |-  ( ( ( K  +  1 )  e.  ( ZZ>= `  M )  /\  N  e.  ( ZZ>= `  K )
)  ->  ( x  e.  ( M ... N
)  <->  x  e.  (
( M ... K
)  u.  ( ( K  +  1 ) ... N ) ) ) )
4241eqrdv 2204 1  |-  ( ( ( K  +  1 )  e.  ( ZZ>= `  M )  /\  N  e.  ( ZZ>= `  K )
)  ->  ( M ... N )  =  ( ( M ... K
)  u.  ( ( K  +  1 ) ... N ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 710    = wceq 1373    e. wcel 2177    u. cun 3168   class class class wbr 4054   ` cfv 5285  (class class class)co 5962   1c1 7956    + caddc 7958    < clt 8137    <_ cle 8138   ZZcz 9402   ZZ>=cuz 9678   ...cfz 10160
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4173  ax-pow 4229  ax-pr 4264  ax-un 4493  ax-setind 4598  ax-cnex 8046  ax-resscn 8047  ax-1cn 8048  ax-1re 8049  ax-icn 8050  ax-addcl 8051  ax-addrcl 8052  ax-mulcl 8053  ax-addcom 8055  ax-addass 8057  ax-distr 8059  ax-i2m1 8060  ax-0lt1 8061  ax-0id 8063  ax-rnegex 8064  ax-cnre 8066  ax-pre-ltirr 8067  ax-pre-ltwlin 8068  ax-pre-lttrn 8069  ax-pre-ltadd 8071
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3003  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3860  df-int 3895  df-br 4055  df-opab 4117  df-mpt 4118  df-id 4353  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-iota 5246  df-fun 5287  df-fn 5288  df-f 5289  df-fv 5293  df-riota 5917  df-ov 5965  df-oprab 5966  df-mpo 5967  df-pnf 8139  df-mnf 8140  df-xr 8141  df-ltxr 8142  df-le 8143  df-sub 8275  df-neg 8276  df-inn 9067  df-n0 9326  df-z 9403  df-uz 9679  df-fz 10161
This theorem is referenced by:  fzsplit  10203  fzpred  10222  fz0to4untppr  10276  gausslemma2dlem6  15629
  Copyright terms: Public domain W3C validator