ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fzsplit2 Unicode version

Theorem fzsplit2 10142
Description: Split a finite interval of integers into two parts. (Contributed by Mario Carneiro, 13-Apr-2016.)
Assertion
Ref Expression
fzsplit2  |-  ( ( ( K  +  1 )  e.  ( ZZ>= `  M )  /\  N  e.  ( ZZ>= `  K )
)  ->  ( M ... N )  =  ( ( M ... K
)  u.  ( ( K  +  1 ) ... N ) ) )

Proof of Theorem fzsplit2
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 elfzelz 10117 . . . . . 6  |-  ( x  e.  ( M ... N )  ->  x  e.  ZZ )
2 eluzel2 9623 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  K
)  ->  K  e.  ZZ )
32adantl 277 . . . . . 6  |-  ( ( ( K  +  1 )  e.  ( ZZ>= `  M )  /\  N  e.  ( ZZ>= `  K )
)  ->  K  e.  ZZ )
4 zlelttric 9388 . . . . . 6  |-  ( ( x  e.  ZZ  /\  K  e.  ZZ )  ->  ( x  <_  K  \/  K  <  x ) )
51, 3, 4syl2anr 290 . . . . 5  |-  ( ( ( ( K  + 
1 )  e.  (
ZZ>= `  M )  /\  N  e.  ( ZZ>= `  K ) )  /\  x  e.  ( M ... N ) )  -> 
( x  <_  K  \/  K  <  x ) )
6 elfzuz 10113 . . . . . . 7  |-  ( x  e.  ( M ... N )  ->  x  e.  ( ZZ>= `  M )
)
7 elfz5 10109 . . . . . . 7  |-  ( ( x  e.  ( ZZ>= `  M )  /\  K  e.  ZZ )  ->  (
x  e.  ( M ... K )  <->  x  <_  K ) )
86, 3, 7syl2anr 290 . . . . . 6  |-  ( ( ( ( K  + 
1 )  e.  (
ZZ>= `  M )  /\  N  e.  ( ZZ>= `  K ) )  /\  x  e.  ( M ... N ) )  -> 
( x  e.  ( M ... K )  <-> 
x  <_  K )
)
9 simpl 109 . . . . . . . . 9  |-  ( ( ( K  +  1 )  e.  ( ZZ>= `  M )  /\  N  e.  ( ZZ>= `  K )
)  ->  ( K  +  1 )  e.  ( ZZ>= `  M )
)
10 eluzelz 9627 . . . . . . . . 9  |-  ( ( K  +  1 )  e.  ( ZZ>= `  M
)  ->  ( K  +  1 )  e.  ZZ )
119, 10syl 14 . . . . . . . 8  |-  ( ( ( K  +  1 )  e.  ( ZZ>= `  M )  /\  N  e.  ( ZZ>= `  K )
)  ->  ( K  +  1 )  e.  ZZ )
12 eluz 9631 . . . . . . . 8  |-  ( ( ( K  +  1 )  e.  ZZ  /\  x  e.  ZZ )  ->  ( x  e.  (
ZZ>= `  ( K  + 
1 ) )  <->  ( K  +  1 )  <_  x ) )
1311, 1, 12syl2an 289 . . . . . . 7  |-  ( ( ( ( K  + 
1 )  e.  (
ZZ>= `  M )  /\  N  e.  ( ZZ>= `  K ) )  /\  x  e.  ( M ... N ) )  -> 
( x  e.  (
ZZ>= `  ( K  + 
1 ) )  <->  ( K  +  1 )  <_  x ) )
14 elfzuz3 10114 . . . . . . . . 9  |-  ( x  e.  ( M ... N )  ->  N  e.  ( ZZ>= `  x )
)
1514adantl 277 . . . . . . . 8  |-  ( ( ( ( K  + 
1 )  e.  (
ZZ>= `  M )  /\  N  e.  ( ZZ>= `  K ) )  /\  x  e.  ( M ... N ) )  ->  N  e.  ( ZZ>= `  x ) )
16 elfzuzb 10111 . . . . . . . . 9  |-  ( x  e.  ( ( K  +  1 ) ... N )  <->  ( x  e.  ( ZZ>= `  ( K  +  1 ) )  /\  N  e.  (
ZZ>= `  x ) ) )
1716rbaib 922 . . . . . . . 8  |-  ( N  e.  ( ZZ>= `  x
)  ->  ( x  e.  ( ( K  + 
1 ) ... N
)  <->  x  e.  ( ZZ>=
`  ( K  + 
1 ) ) ) )
1815, 17syl 14 . . . . . . 7  |-  ( ( ( ( K  + 
1 )  e.  (
ZZ>= `  M )  /\  N  e.  ( ZZ>= `  K ) )  /\  x  e.  ( M ... N ) )  -> 
( x  e.  ( ( K  +  1 ) ... N )  <-> 
x  e.  ( ZZ>= `  ( K  +  1
) ) ) )
19 zltp1le 9397 . . . . . . . 8  |-  ( ( K  e.  ZZ  /\  x  e.  ZZ )  ->  ( K  <  x  <->  ( K  +  1 )  <_  x ) )
203, 1, 19syl2an 289 . . . . . . 7  |-  ( ( ( ( K  + 
1 )  e.  (
ZZ>= `  M )  /\  N  e.  ( ZZ>= `  K ) )  /\  x  e.  ( M ... N ) )  -> 
( K  <  x  <->  ( K  +  1 )  <_  x ) )
2113, 18, 203bitr4d 220 . . . . . 6  |-  ( ( ( ( K  + 
1 )  e.  (
ZZ>= `  M )  /\  N  e.  ( ZZ>= `  K ) )  /\  x  e.  ( M ... N ) )  -> 
( x  e.  ( ( K  +  1 ) ... N )  <-> 
K  <  x )
)
228, 21orbi12d 794 . . . . 5  |-  ( ( ( ( K  + 
1 )  e.  (
ZZ>= `  M )  /\  N  e.  ( ZZ>= `  K ) )  /\  x  e.  ( M ... N ) )  -> 
( ( x  e.  ( M ... K
)  \/  x  e.  ( ( K  + 
1 ) ... N
) )  <->  ( x  <_  K  \/  K  < 
x ) ) )
235, 22mpbird 167 . . . 4  |-  ( ( ( ( K  + 
1 )  e.  (
ZZ>= `  M )  /\  N  e.  ( ZZ>= `  K ) )  /\  x  e.  ( M ... N ) )  -> 
( x  e.  ( M ... K )  \/  x  e.  ( ( K  +  1 ) ... N ) ) )
24 elfzuz 10113 . . . . . . 7  |-  ( x  e.  ( M ... K )  ->  x  e.  ( ZZ>= `  M )
)
2524adantl 277 . . . . . 6  |-  ( ( ( ( K  + 
1 )  e.  (
ZZ>= `  M )  /\  N  e.  ( ZZ>= `  K ) )  /\  x  e.  ( M ... K ) )  ->  x  e.  ( ZZ>= `  M ) )
26 simpr 110 . . . . . . 7  |-  ( ( ( K  +  1 )  e.  ( ZZ>= `  M )  /\  N  e.  ( ZZ>= `  K )
)  ->  N  e.  ( ZZ>= `  K )
)
27 elfzuz3 10114 . . . . . . 7  |-  ( x  e.  ( M ... K )  ->  K  e.  ( ZZ>= `  x )
)
28 uztrn 9635 . . . . . . 7  |-  ( ( N  e.  ( ZZ>= `  K )  /\  K  e.  ( ZZ>= `  x )
)  ->  N  e.  ( ZZ>= `  x )
)
2926, 27, 28syl2an 289 . . . . . 6  |-  ( ( ( ( K  + 
1 )  e.  (
ZZ>= `  M )  /\  N  e.  ( ZZ>= `  K ) )  /\  x  e.  ( M ... K ) )  ->  N  e.  ( ZZ>= `  x ) )
30 elfzuzb 10111 . . . . . 6  |-  ( x  e.  ( M ... N )  <->  ( x  e.  ( ZZ>= `  M )  /\  N  e.  ( ZZ>=
`  x ) ) )
3125, 29, 30sylanbrc 417 . . . . 5  |-  ( ( ( ( K  + 
1 )  e.  (
ZZ>= `  M )  /\  N  e.  ( ZZ>= `  K ) )  /\  x  e.  ( M ... K ) )  ->  x  e.  ( M ... N ) )
32 elfzuz 10113 . . . . . . 7  |-  ( x  e.  ( ( K  +  1 ) ... N )  ->  x  e.  ( ZZ>= `  ( K  +  1 ) ) )
33 uztrn 9635 . . . . . . 7  |-  ( ( x  e.  ( ZZ>= `  ( K  +  1
) )  /\  ( K  +  1 )  e.  ( ZZ>= `  M
) )  ->  x  e.  ( ZZ>= `  M )
)
3432, 9, 33syl2anr 290 . . . . . 6  |-  ( ( ( ( K  + 
1 )  e.  (
ZZ>= `  M )  /\  N  e.  ( ZZ>= `  K ) )  /\  x  e.  ( ( K  +  1 ) ... N ) )  ->  x  e.  (
ZZ>= `  M ) )
35 elfzuz3 10114 . . . . . . 7  |-  ( x  e.  ( ( K  +  1 ) ... N )  ->  N  e.  ( ZZ>= `  x )
)
3635adantl 277 . . . . . 6  |-  ( ( ( ( K  + 
1 )  e.  (
ZZ>= `  M )  /\  N  e.  ( ZZ>= `  K ) )  /\  x  e.  ( ( K  +  1 ) ... N ) )  ->  N  e.  (
ZZ>= `  x ) )
3734, 36, 30sylanbrc 417 . . . . 5  |-  ( ( ( ( K  + 
1 )  e.  (
ZZ>= `  M )  /\  N  e.  ( ZZ>= `  K ) )  /\  x  e.  ( ( K  +  1 ) ... N ) )  ->  x  e.  ( M ... N ) )
3831, 37jaodan 798 . . . 4  |-  ( ( ( ( K  + 
1 )  e.  (
ZZ>= `  M )  /\  N  e.  ( ZZ>= `  K ) )  /\  ( x  e.  ( M ... K )  \/  x  e.  ( ( K  +  1 ) ... N ) ) )  ->  x  e.  ( M ... N ) )
3923, 38impbida 596 . . 3  |-  ( ( ( K  +  1 )  e.  ( ZZ>= `  M )  /\  N  e.  ( ZZ>= `  K )
)  ->  ( x  e.  ( M ... N
)  <->  ( x  e.  ( M ... K
)  \/  x  e.  ( ( K  + 
1 ) ... N
) ) ) )
40 elun 3305 . . 3  |-  ( x  e.  ( ( M ... K )  u.  ( ( K  + 
1 ) ... N
) )  <->  ( x  e.  ( M ... K
)  \/  x  e.  ( ( K  + 
1 ) ... N
) ) )
4139, 40bitr4di 198 . 2  |-  ( ( ( K  +  1 )  e.  ( ZZ>= `  M )  /\  N  e.  ( ZZ>= `  K )
)  ->  ( x  e.  ( M ... N
)  <->  x  e.  (
( M ... K
)  u.  ( ( K  +  1 ) ... N ) ) ) )
4241eqrdv 2194 1  |-  ( ( ( K  +  1 )  e.  ( ZZ>= `  M )  /\  N  e.  ( ZZ>= `  K )
)  ->  ( M ... N )  =  ( ( M ... K
)  u.  ( ( K  +  1 ) ... N ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709    = wceq 1364    e. wcel 2167    u. cun 3155   class class class wbr 4034   ` cfv 5259  (class class class)co 5925   1c1 7897    + caddc 7899    < clt 8078    <_ cle 8079   ZZcz 9343   ZZ>=cuz 9618   ...cfz 10100
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-addass 7998  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-0id 8004  ax-rnegex 8005  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-ltadd 8012
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-inn 9008  df-n0 9267  df-z 9344  df-uz 9619  df-fz 10101
This theorem is referenced by:  fzsplit  10143  fzpred  10162  fz0to4untppr  10216  gausslemma2dlem6  15392
  Copyright terms: Public domain W3C validator