ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  peano2fzr Unicode version

Theorem peano2fzr 10056
Description: A Peano-postulate-like theorem for downward closure of a finite set of sequential integers. (Contributed by Mario Carneiro, 27-May-2014.)
Assertion
Ref Expression
peano2fzr  |-  ( ( K  e.  ( ZZ>= `  M )  /\  ( K  +  1 )  e.  ( M ... N ) )  ->  K  e.  ( M ... N ) )

Proof of Theorem peano2fzr
StepHypRef Expression
1 simpl 109 . 2  |-  ( ( K  e.  ( ZZ>= `  M )  /\  ( K  +  1 )  e.  ( M ... N ) )  ->  K  e.  ( ZZ>= `  M ) )
2 eluzelz 9556 . . 3  |-  ( K  e.  ( ZZ>= `  M
)  ->  K  e.  ZZ )
3 elfzuz3 10041 . . 3  |-  ( ( K  +  1 )  e.  ( M ... N )  ->  N  e.  ( ZZ>= `  ( K  +  1 ) ) )
4 peano2uzr 9604 . . 3  |-  ( ( K  e.  ZZ  /\  N  e.  ( ZZ>= `  ( K  +  1
) ) )  ->  N  e.  ( ZZ>= `  K ) )
52, 3, 4syl2an 289 . 2  |-  ( ( K  e.  ( ZZ>= `  M )  /\  ( K  +  1 )  e.  ( M ... N ) )  ->  N  e.  ( ZZ>= `  K ) )
6 elfzuzb 10038 . 2  |-  ( K  e.  ( M ... N )  <->  ( K  e.  ( ZZ>= `  M )  /\  N  e.  ( ZZ>=
`  K ) ) )
71, 5, 6sylanbrc 417 1  |-  ( ( K  e.  ( ZZ>= `  M )  /\  ( K  +  1 )  e.  ( M ... N ) )  ->  K  e.  ( M ... N ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2160   ` cfv 5231  (class class class)co 5891   1c1 7831    + caddc 7833   ZZcz 9272   ZZ>=cuz 9547   ...cfz 10027
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4189  ax-pr 4224  ax-un 4448  ax-setind 4551  ax-cnex 7921  ax-resscn 7922  ax-1cn 7923  ax-1re 7924  ax-icn 7925  ax-addcl 7926  ax-addrcl 7927  ax-mulcl 7928  ax-addcom 7930  ax-addass 7932  ax-distr 7934  ax-i2m1 7935  ax-0lt1 7936  ax-0id 7938  ax-rnegex 7939  ax-cnre 7941  ax-pre-ltirr 7942  ax-pre-ltwlin 7943  ax-pre-lttrn 7944  ax-pre-ltadd 7946
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rab 2477  df-v 2754  df-sbc 2978  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4308  df-xp 4647  df-rel 4648  df-cnv 4649  df-co 4650  df-dm 4651  df-rn 4652  df-res 4653  df-ima 4654  df-iota 5193  df-fun 5233  df-fn 5234  df-f 5235  df-fv 5239  df-riota 5847  df-ov 5894  df-oprab 5895  df-mpo 5896  df-pnf 8013  df-mnf 8014  df-xr 8015  df-ltxr 8016  df-le 8017  df-sub 8149  df-neg 8150  df-inn 8939  df-n0 9196  df-z 9273  df-uz 9548  df-fz 10028
This theorem is referenced by:  fzsuc  10088  peano2fzor  10251  seq3fveq2  10488  seq3shft2  10492  monoord  10495  seq3split  10498  seq3id2  10528
  Copyright terms: Public domain W3C validator