ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ringinvnzdiv Unicode version

Theorem ringinvnzdiv 13927
Description: In a unital ring, a left invertible element is not a zero divisor. (Contributed by FL, 18-Apr-2010.) (Revised by Jeff Madsen, 18-Apr-2010.) (Revised by AV, 24-Aug-2021.)
Hypotheses
Ref Expression
ringinvnzdiv.b  |-  B  =  ( Base `  R
)
ringinvnzdiv.t  |-  .x.  =  ( .r `  R )
ringinvnzdiv.u  |-  .1.  =  ( 1r `  R )
ringinvnzdiv.z  |-  .0.  =  ( 0g `  R )
ringinvnzdiv.r  |-  ( ph  ->  R  e.  Ring )
ringinvnzdiv.x  |-  ( ph  ->  X  e.  B )
ringinvnzdiv.a  |-  ( ph  ->  E. a  e.  B  ( a  .x.  X
)  =  .1.  )
ringinvnzdiv.y  |-  ( ph  ->  Y  e.  B )
Assertion
Ref Expression
ringinvnzdiv  |-  ( ph  ->  ( ( X  .x.  Y )  =  .0.  <->  Y  =  .0.  ) )
Distinct variable groups:    X, a    .0. , a    .1. , a    .x. , a    ph, a    Y, a
Allowed substitution hints:    B( a)    R( a)

Proof of Theorem ringinvnzdiv
StepHypRef Expression
1 ringinvnzdiv.a . . 3  |-  ( ph  ->  E. a  e.  B  ( a  .x.  X
)  =  .1.  )
2 ringinvnzdiv.r . . . . . . . . 9  |-  ( ph  ->  R  e.  Ring )
3 ringinvnzdiv.y . . . . . . . . 9  |-  ( ph  ->  Y  e.  B )
4 ringinvnzdiv.b . . . . . . . . . 10  |-  B  =  ( Base `  R
)
5 ringinvnzdiv.t . . . . . . . . . 10  |-  .x.  =  ( .r `  R )
6 ringinvnzdiv.u . . . . . . . . . 10  |-  .1.  =  ( 1r `  R )
74, 5, 6ringlidm 13900 . . . . . . . . 9  |-  ( ( R  e.  Ring  /\  Y  e.  B )  ->  (  .1.  .x.  Y )  =  Y )
82, 3, 7syl2anc 411 . . . . . . . 8  |-  ( ph  ->  (  .1.  .x.  Y
)  =  Y )
98eqcomd 2213 . . . . . . 7  |-  ( ph  ->  Y  =  (  .1. 
.x.  Y ) )
109ad3antrrr 492 . . . . . 6  |-  ( ( ( ( ph  /\  a  e.  B )  /\  ( a  .x.  X
)  =  .1.  )  /\  ( X  .x.  Y
)  =  .0.  )  ->  Y  =  (  .1. 
.x.  Y ) )
11 oveq1 5974 . . . . . . . . . 10  |-  (  .1.  =  ( a  .x.  X )  ->  (  .1.  .x.  Y )  =  ( ( a  .x.  X )  .x.  Y
) )
1211eqcoms 2210 . . . . . . . . 9  |-  ( ( a  .x.  X )  =  .1.  ->  (  .1.  .x.  Y )  =  ( ( a  .x.  X )  .x.  Y
) )
1312adantl 277 . . . . . . . 8  |-  ( ( ( ph  /\  a  e.  B )  /\  (
a  .x.  X )  =  .1.  )  ->  (  .1.  .x.  Y )  =  ( ( a  .x.  X )  .x.  Y
) )
142adantr 276 . . . . . . . . . . 11  |-  ( (
ph  /\  a  e.  B )  ->  R  e.  Ring )
15 simpr 110 . . . . . . . . . . . 12  |-  ( (
ph  /\  a  e.  B )  ->  a  e.  B )
16 ringinvnzdiv.x . . . . . . . . . . . . 13  |-  ( ph  ->  X  e.  B )
1716adantr 276 . . . . . . . . . . . 12  |-  ( (
ph  /\  a  e.  B )  ->  X  e.  B )
183adantr 276 . . . . . . . . . . . 12  |-  ( (
ph  /\  a  e.  B )  ->  Y  e.  B )
1915, 17, 183jca 1180 . . . . . . . . . . 11  |-  ( (
ph  /\  a  e.  B )  ->  (
a  e.  B  /\  X  e.  B  /\  Y  e.  B )
)
2014, 19jca 306 . . . . . . . . . 10  |-  ( (
ph  /\  a  e.  B )  ->  ( R  e.  Ring  /\  (
a  e.  B  /\  X  e.  B  /\  Y  e.  B )
) )
2120adantr 276 . . . . . . . . 9  |-  ( ( ( ph  /\  a  e.  B )  /\  (
a  .x.  X )  =  .1.  )  ->  ( R  e.  Ring  /\  (
a  e.  B  /\  X  e.  B  /\  Y  e.  B )
) )
224, 5ringass 13893 . . . . . . . . 9  |-  ( ( R  e.  Ring  /\  (
a  e.  B  /\  X  e.  B  /\  Y  e.  B )
)  ->  ( (
a  .x.  X )  .x.  Y )  =  ( a  .x.  ( X 
.x.  Y ) ) )
2321, 22syl 14 . . . . . . . 8  |-  ( ( ( ph  /\  a  e.  B )  /\  (
a  .x.  X )  =  .1.  )  ->  (
( a  .x.  X
)  .x.  Y )  =  ( a  .x.  ( X  .x.  Y ) ) )
2413, 23eqtrd 2240 . . . . . . 7  |-  ( ( ( ph  /\  a  e.  B )  /\  (
a  .x.  X )  =  .1.  )  ->  (  .1.  .x.  Y )  =  ( a  .x.  ( X  .x.  Y ) ) )
2524adantr 276 . . . . . 6  |-  ( ( ( ( ph  /\  a  e.  B )  /\  ( a  .x.  X
)  =  .1.  )  /\  ( X  .x.  Y
)  =  .0.  )  ->  (  .1.  .x.  Y
)  =  ( a 
.x.  ( X  .x.  Y ) ) )
26 oveq2 5975 . . . . . . 7  |-  ( ( X  .x.  Y )  =  .0.  ->  (
a  .x.  ( X  .x.  Y ) )  =  ( a  .x.  .0.  ) )
27 ringinvnzdiv.z . . . . . . . . . 10  |-  .0.  =  ( 0g `  R )
284, 5, 27ringrz 13921 . . . . . . . . 9  |-  ( ( R  e.  Ring  /\  a  e.  B )  ->  (
a  .x.  .0.  )  =  .0.  )
292, 28sylan 283 . . . . . . . 8  |-  ( (
ph  /\  a  e.  B )  ->  (
a  .x.  .0.  )  =  .0.  )
3029adantr 276 . . . . . . 7  |-  ( ( ( ph  /\  a  e.  B )  /\  (
a  .x.  X )  =  .1.  )  ->  (
a  .x.  .0.  )  =  .0.  )
3126, 30sylan9eqr 2262 . . . . . 6  |-  ( ( ( ( ph  /\  a  e.  B )  /\  ( a  .x.  X
)  =  .1.  )  /\  ( X  .x.  Y
)  =  .0.  )  ->  ( a  .x.  ( X  .x.  Y ) )  =  .0.  )
3210, 25, 313eqtrd 2244 . . . . 5  |-  ( ( ( ( ph  /\  a  e.  B )  /\  ( a  .x.  X
)  =  .1.  )  /\  ( X  .x.  Y
)  =  .0.  )  ->  Y  =  .0.  )
3332exp31 364 . . . 4  |-  ( (
ph  /\  a  e.  B )  ->  (
( a  .x.  X
)  =  .1.  ->  ( ( X  .x.  Y
)  =  .0.  ->  Y  =  .0.  ) ) )
3433rexlimdva 2625 . . 3  |-  ( ph  ->  ( E. a  e.  B  ( a  .x.  X )  =  .1. 
->  ( ( X  .x.  Y )  =  .0. 
->  Y  =  .0.  ) ) )
351, 34mpd 13 . 2  |-  ( ph  ->  ( ( X  .x.  Y )  =  .0. 
->  Y  =  .0.  ) )
36 oveq2 5975 . . . 4  |-  ( Y  =  .0.  ->  ( X  .x.  Y )  =  ( X  .x.  .0.  ) )
374, 5, 27ringrz 13921 . . . . 5  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  ( X  .x.  .0.  )  =  .0.  )
382, 16, 37syl2anc 411 . . . 4  |-  ( ph  ->  ( X  .x.  .0.  )  =  .0.  )
3936, 38sylan9eqr 2262 . . 3  |-  ( (
ph  /\  Y  =  .0.  )  ->  ( X 
.x.  Y )  =  .0.  )
4039ex 115 . 2  |-  ( ph  ->  ( Y  =  .0. 
->  ( X  .x.  Y
)  =  .0.  )
)
4135, 40impbid 129 1  |-  ( ph  ->  ( ( X  .x.  Y )  =  .0.  <->  Y  =  .0.  ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 981    = wceq 1373    e. wcel 2178   E.wrex 2487   ` cfv 5290  (class class class)co 5967   Basecbs 12947   .rcmulr 13025   0gc0g 13203   1rcur 13836   Ringcrg 13873
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-addcom 8060  ax-addass 8062  ax-i2m1 8065  ax-0lt1 8066  ax-0id 8068  ax-rnegex 8069  ax-pre-ltirr 8072  ax-pre-ltadd 8076
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-pnf 8144  df-mnf 8145  df-ltxr 8147  df-inn 9072  df-2 9130  df-3 9131  df-ndx 12950  df-slot 12951  df-base 12953  df-sets 12954  df-plusg 13037  df-mulr 13038  df-0g 13205  df-mgm 13303  df-sgrp 13349  df-mnd 13364  df-grp 13450  df-mgp 13798  df-ur 13837  df-ring 13875
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator