Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ringinvnzdiv | Unicode version |
Description: In a unitary ring, a left invertible element is not a zero divisor. (Contributed by FL, 18-Apr-2010.) (Revised by Jeff Madsen, 18-Apr-2010.) (Revised by AV, 24-Aug-2021.) |
Ref | Expression |
---|---|
ringinvnzdiv.b | |
ringinvnzdiv.t | |
ringinvnzdiv.u | |
ringinvnzdiv.z | |
ringinvnzdiv.r | |
ringinvnzdiv.x | |
ringinvnzdiv.a | |
ringinvnzdiv.y |
Ref | Expression |
---|---|
ringinvnzdiv |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ringinvnzdiv.a | . . 3 | |
2 | ringinvnzdiv.r | . . . . . . . . 9 | |
3 | ringinvnzdiv.y | . . . . . . . . 9 | |
4 | ringinvnzdiv.b | . . . . . . . . . 10 | |
5 | ringinvnzdiv.t | . . . . . . . . . 10 | |
6 | ringinvnzdiv.u | . . . . . . . . . 10 | |
7 | 4, 5, 6 | ringlidm 12999 | . . . . . . . . 9 |
8 | 2, 3, 7 | syl2anc 411 | . . . . . . . 8 |
9 | 8 | eqcomd 2181 | . . . . . . 7 |
10 | 9 | ad3antrrr 492 | . . . . . 6 |
11 | oveq1 5872 | . . . . . . . . . 10 | |
12 | 11 | eqcoms 2178 | . . . . . . . . 9 |
13 | 12 | adantl 277 | . . . . . . . 8 |
14 | 2 | adantr 276 | . . . . . . . . . . 11 |
15 | simpr 110 | . . . . . . . . . . . 12 | |
16 | ringinvnzdiv.x | . . . . . . . . . . . . 13 | |
17 | 16 | adantr 276 | . . . . . . . . . . . 12 |
18 | 3 | adantr 276 | . . . . . . . . . . . 12 |
19 | 15, 17, 18 | 3jca 1177 | . . . . . . . . . . 11 |
20 | 14, 19 | jca 306 | . . . . . . . . . 10 |
21 | 20 | adantr 276 | . . . . . . . . 9 |
22 | 4, 5 | ringass 12992 | . . . . . . . . 9 |
23 | 21, 22 | syl 14 | . . . . . . . 8 |
24 | 13, 23 | eqtrd 2208 | . . . . . . 7 |
25 | 24 | adantr 276 | . . . . . 6 |
26 | oveq2 5873 | . . . . . . 7 | |
27 | ringinvnzdiv.z | . . . . . . . . . 10 | |
28 | 4, 5, 27 | ringrz 13015 | . . . . . . . . 9 |
29 | 2, 28 | sylan 283 | . . . . . . . 8 |
30 | 29 | adantr 276 | . . . . . . 7 |
31 | 26, 30 | sylan9eqr 2230 | . . . . . 6 |
32 | 10, 25, 31 | 3eqtrd 2212 | . . . . 5 |
33 | 32 | exp31 364 | . . . 4 |
34 | 33 | rexlimdva 2592 | . . 3 |
35 | 1, 34 | mpd 13 | . 2 |
36 | oveq2 5873 | . . . 4 | |
37 | 4, 5, 27 | ringrz 13015 | . . . . 5 |
38 | 2, 16, 37 | syl2anc 411 | . . . 4 |
39 | 36, 38 | sylan9eqr 2230 | . . 3 |
40 | 39 | ex 115 | . 2 |
41 | 35, 40 | impbid 129 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 104 wb 105 w3a 978 wceq 1353 wcel 2146 wrex 2454 cfv 5208 (class class class)co 5865 cbs 12427 cmulr 12492 c0g 12625 cur 12935 crg 12972 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 ax-un 4427 ax-setind 4530 ax-cnex 7877 ax-resscn 7878 ax-1cn 7879 ax-1re 7880 ax-icn 7881 ax-addcl 7882 ax-addrcl 7883 ax-mulcl 7884 ax-addcom 7886 ax-addass 7888 ax-i2m1 7891 ax-0lt1 7892 ax-0id 7894 ax-rnegex 7895 ax-pre-ltirr 7898 ax-pre-ltadd 7902 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-nel 2441 df-ral 2458 df-rex 2459 df-reu 2460 df-rmo 2461 df-rab 2462 df-v 2737 df-sbc 2961 df-csb 3056 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-nul 3421 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-int 3841 df-br 3999 df-opab 4060 df-mpt 4061 df-id 4287 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-res 4632 df-ima 4633 df-iota 5170 df-fun 5210 df-fn 5211 df-fv 5216 df-riota 5821 df-ov 5868 df-oprab 5869 df-mpo 5870 df-pnf 7968 df-mnf 7969 df-ltxr 7971 df-inn 8891 df-2 8949 df-3 8950 df-ndx 12430 df-slot 12431 df-base 12433 df-sets 12434 df-plusg 12504 df-mulr 12505 df-0g 12627 df-mgm 12639 df-sgrp 12672 df-mnd 12682 df-grp 12740 df-mgp 12926 df-ur 12936 df-ring 12974 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |