ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ringinvnzdiv Unicode version

Theorem ringinvnzdiv 13606
Description: In a unital ring, a left invertible element is not a zero divisor. (Contributed by FL, 18-Apr-2010.) (Revised by Jeff Madsen, 18-Apr-2010.) (Revised by AV, 24-Aug-2021.)
Hypotheses
Ref Expression
ringinvnzdiv.b  |-  B  =  ( Base `  R
)
ringinvnzdiv.t  |-  .x.  =  ( .r `  R )
ringinvnzdiv.u  |-  .1.  =  ( 1r `  R )
ringinvnzdiv.z  |-  .0.  =  ( 0g `  R )
ringinvnzdiv.r  |-  ( ph  ->  R  e.  Ring )
ringinvnzdiv.x  |-  ( ph  ->  X  e.  B )
ringinvnzdiv.a  |-  ( ph  ->  E. a  e.  B  ( a  .x.  X
)  =  .1.  )
ringinvnzdiv.y  |-  ( ph  ->  Y  e.  B )
Assertion
Ref Expression
ringinvnzdiv  |-  ( ph  ->  ( ( X  .x.  Y )  =  .0.  <->  Y  =  .0.  ) )
Distinct variable groups:    X, a    .0. , a    .1. , a    .x. , a    ph, a    Y, a
Allowed substitution hints:    B( a)    R( a)

Proof of Theorem ringinvnzdiv
StepHypRef Expression
1 ringinvnzdiv.a . . 3  |-  ( ph  ->  E. a  e.  B  ( a  .x.  X
)  =  .1.  )
2 ringinvnzdiv.r . . . . . . . . 9  |-  ( ph  ->  R  e.  Ring )
3 ringinvnzdiv.y . . . . . . . . 9  |-  ( ph  ->  Y  e.  B )
4 ringinvnzdiv.b . . . . . . . . . 10  |-  B  =  ( Base `  R
)
5 ringinvnzdiv.t . . . . . . . . . 10  |-  .x.  =  ( .r `  R )
6 ringinvnzdiv.u . . . . . . . . . 10  |-  .1.  =  ( 1r `  R )
74, 5, 6ringlidm 13579 . . . . . . . . 9  |-  ( ( R  e.  Ring  /\  Y  e.  B )  ->  (  .1.  .x.  Y )  =  Y )
82, 3, 7syl2anc 411 . . . . . . . 8  |-  ( ph  ->  (  .1.  .x.  Y
)  =  Y )
98eqcomd 2202 . . . . . . 7  |-  ( ph  ->  Y  =  (  .1. 
.x.  Y ) )
109ad3antrrr 492 . . . . . 6  |-  ( ( ( ( ph  /\  a  e.  B )  /\  ( a  .x.  X
)  =  .1.  )  /\  ( X  .x.  Y
)  =  .0.  )  ->  Y  =  (  .1. 
.x.  Y ) )
11 oveq1 5929 . . . . . . . . . 10  |-  (  .1.  =  ( a  .x.  X )  ->  (  .1.  .x.  Y )  =  ( ( a  .x.  X )  .x.  Y
) )
1211eqcoms 2199 . . . . . . . . 9  |-  ( ( a  .x.  X )  =  .1.  ->  (  .1.  .x.  Y )  =  ( ( a  .x.  X )  .x.  Y
) )
1312adantl 277 . . . . . . . 8  |-  ( ( ( ph  /\  a  e.  B )  /\  (
a  .x.  X )  =  .1.  )  ->  (  .1.  .x.  Y )  =  ( ( a  .x.  X )  .x.  Y
) )
142adantr 276 . . . . . . . . . . 11  |-  ( (
ph  /\  a  e.  B )  ->  R  e.  Ring )
15 simpr 110 . . . . . . . . . . . 12  |-  ( (
ph  /\  a  e.  B )  ->  a  e.  B )
16 ringinvnzdiv.x . . . . . . . . . . . . 13  |-  ( ph  ->  X  e.  B )
1716adantr 276 . . . . . . . . . . . 12  |-  ( (
ph  /\  a  e.  B )  ->  X  e.  B )
183adantr 276 . . . . . . . . . . . 12  |-  ( (
ph  /\  a  e.  B )  ->  Y  e.  B )
1915, 17, 183jca 1179 . . . . . . . . . . 11  |-  ( (
ph  /\  a  e.  B )  ->  (
a  e.  B  /\  X  e.  B  /\  Y  e.  B )
)
2014, 19jca 306 . . . . . . . . . 10  |-  ( (
ph  /\  a  e.  B )  ->  ( R  e.  Ring  /\  (
a  e.  B  /\  X  e.  B  /\  Y  e.  B )
) )
2120adantr 276 . . . . . . . . 9  |-  ( ( ( ph  /\  a  e.  B )  /\  (
a  .x.  X )  =  .1.  )  ->  ( R  e.  Ring  /\  (
a  e.  B  /\  X  e.  B  /\  Y  e.  B )
) )
224, 5ringass 13572 . . . . . . . . 9  |-  ( ( R  e.  Ring  /\  (
a  e.  B  /\  X  e.  B  /\  Y  e.  B )
)  ->  ( (
a  .x.  X )  .x.  Y )  =  ( a  .x.  ( X 
.x.  Y ) ) )
2321, 22syl 14 . . . . . . . 8  |-  ( ( ( ph  /\  a  e.  B )  /\  (
a  .x.  X )  =  .1.  )  ->  (
( a  .x.  X
)  .x.  Y )  =  ( a  .x.  ( X  .x.  Y ) ) )
2413, 23eqtrd 2229 . . . . . . 7  |-  ( ( ( ph  /\  a  e.  B )  /\  (
a  .x.  X )  =  .1.  )  ->  (  .1.  .x.  Y )  =  ( a  .x.  ( X  .x.  Y ) ) )
2524adantr 276 . . . . . 6  |-  ( ( ( ( ph  /\  a  e.  B )  /\  ( a  .x.  X
)  =  .1.  )  /\  ( X  .x.  Y
)  =  .0.  )  ->  (  .1.  .x.  Y
)  =  ( a 
.x.  ( X  .x.  Y ) ) )
26 oveq2 5930 . . . . . . 7  |-  ( ( X  .x.  Y )  =  .0.  ->  (
a  .x.  ( X  .x.  Y ) )  =  ( a  .x.  .0.  ) )
27 ringinvnzdiv.z . . . . . . . . . 10  |-  .0.  =  ( 0g `  R )
284, 5, 27ringrz 13600 . . . . . . . . 9  |-  ( ( R  e.  Ring  /\  a  e.  B )  ->  (
a  .x.  .0.  )  =  .0.  )
292, 28sylan 283 . . . . . . . 8  |-  ( (
ph  /\  a  e.  B )  ->  (
a  .x.  .0.  )  =  .0.  )
3029adantr 276 . . . . . . 7  |-  ( ( ( ph  /\  a  e.  B )  /\  (
a  .x.  X )  =  .1.  )  ->  (
a  .x.  .0.  )  =  .0.  )
3126, 30sylan9eqr 2251 . . . . . 6  |-  ( ( ( ( ph  /\  a  e.  B )  /\  ( a  .x.  X
)  =  .1.  )  /\  ( X  .x.  Y
)  =  .0.  )  ->  ( a  .x.  ( X  .x.  Y ) )  =  .0.  )
3210, 25, 313eqtrd 2233 . . . . 5  |-  ( ( ( ( ph  /\  a  e.  B )  /\  ( a  .x.  X
)  =  .1.  )  /\  ( X  .x.  Y
)  =  .0.  )  ->  Y  =  .0.  )
3332exp31 364 . . . 4  |-  ( (
ph  /\  a  e.  B )  ->  (
( a  .x.  X
)  =  .1.  ->  ( ( X  .x.  Y
)  =  .0.  ->  Y  =  .0.  ) ) )
3433rexlimdva 2614 . . 3  |-  ( ph  ->  ( E. a  e.  B  ( a  .x.  X )  =  .1. 
->  ( ( X  .x.  Y )  =  .0. 
->  Y  =  .0.  ) ) )
351, 34mpd 13 . 2  |-  ( ph  ->  ( ( X  .x.  Y )  =  .0. 
->  Y  =  .0.  ) )
36 oveq2 5930 . . . 4  |-  ( Y  =  .0.  ->  ( X  .x.  Y )  =  ( X  .x.  .0.  ) )
374, 5, 27ringrz 13600 . . . . 5  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  ( X  .x.  .0.  )  =  .0.  )
382, 16, 37syl2anc 411 . . . 4  |-  ( ph  ->  ( X  .x.  .0.  )  =  .0.  )
3936, 38sylan9eqr 2251 . . 3  |-  ( (
ph  /\  Y  =  .0.  )  ->  ( X 
.x.  Y )  =  .0.  )
4039ex 115 . 2  |-  ( ph  ->  ( Y  =  .0. 
->  ( X  .x.  Y
)  =  .0.  )
)
4135, 40impbid 129 1  |-  ( ph  ->  ( ( X  .x.  Y )  =  .0.  <->  Y  =  .0.  ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2167   E.wrex 2476   ` cfv 5258  (class class class)co 5922   Basecbs 12678   .rcmulr 12756   0gc0g 12927   1rcur 13515   Ringcrg 13552
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-i2m1 7984  ax-0lt1 7985  ax-0id 7987  ax-rnegex 7988  ax-pre-ltirr 7991  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-pnf 8063  df-mnf 8064  df-ltxr 8066  df-inn 8991  df-2 9049  df-3 9050  df-ndx 12681  df-slot 12682  df-base 12684  df-sets 12685  df-plusg 12768  df-mulr 12769  df-0g 12929  df-mgm 12999  df-sgrp 13045  df-mnd 13058  df-grp 13135  df-mgp 13477  df-ur 13516  df-ring 13554
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator