ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fsum0diaglem Unicode version

Theorem fsum0diaglem 11443
Description: Lemma for fisum0diag 11444. (Contributed by Mario Carneiro, 28-Apr-2014.) (Revised by Mario Carneiro, 8-Apr-2016.)
Assertion
Ref Expression
fsum0diaglem  |-  ( ( j  e.  ( 0 ... N )  /\  k  e.  ( 0 ... ( N  -  j ) ) )  ->  ( k  e.  ( 0 ... N
)  /\  j  e.  ( 0 ... ( N  -  k )
) ) )
Distinct variable group:    j, k, N

Proof of Theorem fsum0diaglem
StepHypRef Expression
1 elfzle1 10024 . . . . . . 7  |-  ( j  e.  ( 0 ... N )  ->  0  <_  j )
21adantr 276 . . . . . 6  |-  ( ( j  e.  ( 0 ... N )  /\  k  e.  ( 0 ... ( N  -  j ) ) )  ->  0  <_  j
)
3 elfz3nn0 10112 . . . . . . . . . 10  |-  ( j  e.  ( 0 ... N )  ->  N  e.  NN0 )
43adantr 276 . . . . . . . . 9  |-  ( ( j  e.  ( 0 ... N )  /\  k  e.  ( 0 ... ( N  -  j ) ) )  ->  N  e.  NN0 )
54nn0zd 9371 . . . . . . . 8  |-  ( ( j  e.  ( 0 ... N )  /\  k  e.  ( 0 ... ( N  -  j ) ) )  ->  N  e.  ZZ )
65zred 9373 . . . . . . 7  |-  ( ( j  e.  ( 0 ... N )  /\  k  e.  ( 0 ... ( N  -  j ) ) )  ->  N  e.  RR )
7 elfzelz 10022 . . . . . . . . 9  |-  ( j  e.  ( 0 ... N )  ->  j  e.  ZZ )
87adantr 276 . . . . . . . 8  |-  ( ( j  e.  ( 0 ... N )  /\  k  e.  ( 0 ... ( N  -  j ) ) )  ->  j  e.  ZZ )
98zred 9373 . . . . . . 7  |-  ( ( j  e.  ( 0 ... N )  /\  k  e.  ( 0 ... ( N  -  j ) ) )  ->  j  e.  RR )
106, 9subge02d 8492 . . . . . 6  |-  ( ( j  e.  ( 0 ... N )  /\  k  e.  ( 0 ... ( N  -  j ) ) )  ->  ( 0  <_ 
j  <->  ( N  -  j )  <_  N
) )
112, 10mpbid 147 . . . . 5  |-  ( ( j  e.  ( 0 ... N )  /\  k  e.  ( 0 ... ( N  -  j ) ) )  ->  ( N  -  j )  <_  N
)
125, 8zsubcld 9378 . . . . . 6  |-  ( ( j  e.  ( 0 ... N )  /\  k  e.  ( 0 ... ( N  -  j ) ) )  ->  ( N  -  j )  e.  ZZ )
13 eluz 9539 . . . . . 6  |-  ( ( ( N  -  j
)  e.  ZZ  /\  N  e.  ZZ )  ->  ( N  e.  (
ZZ>= `  ( N  -  j ) )  <->  ( N  -  j )  <_  N ) )
1412, 5, 13syl2anc 411 . . . . 5  |-  ( ( j  e.  ( 0 ... N )  /\  k  e.  ( 0 ... ( N  -  j ) ) )  ->  ( N  e.  ( ZZ>= `  ( N  -  j ) )  <-> 
( N  -  j
)  <_  N )
)
1511, 14mpbird 167 . . . 4  |-  ( ( j  e.  ( 0 ... N )  /\  k  e.  ( 0 ... ( N  -  j ) ) )  ->  N  e.  (
ZZ>= `  ( N  -  j ) ) )
16 fzss2 10061 . . . 4  |-  ( N  e.  ( ZZ>= `  ( N  -  j )
)  ->  ( 0 ... ( N  -  j ) )  C_  ( 0 ... N
) )
1715, 16syl 14 . . 3  |-  ( ( j  e.  ( 0 ... N )  /\  k  e.  ( 0 ... ( N  -  j ) ) )  ->  ( 0 ... ( N  -  j
) )  C_  (
0 ... N ) )
18 simpr 110 . . 3  |-  ( ( j  e.  ( 0 ... N )  /\  k  e.  ( 0 ... ( N  -  j ) ) )  ->  k  e.  ( 0 ... ( N  -  j ) ) )
1917, 18sseldd 3156 . 2  |-  ( ( j  e.  ( 0 ... N )  /\  k  e.  ( 0 ... ( N  -  j ) ) )  ->  k  e.  ( 0 ... N ) )
20 elfzelz 10022 . . . . . 6  |-  ( k  e.  ( 0 ... ( N  -  j
) )  ->  k  e.  ZZ )
2120adantl 277 . . . . 5  |-  ( ( j  e.  ( 0 ... N )  /\  k  e.  ( 0 ... ( N  -  j ) ) )  ->  k  e.  ZZ )
2221zred 9373 . . . 4  |-  ( ( j  e.  ( 0 ... N )  /\  k  e.  ( 0 ... ( N  -  j ) ) )  ->  k  e.  RR )
23 elfzle2 10025 . . . . 5  |-  ( k  e.  ( 0 ... ( N  -  j
) )  ->  k  <_  ( N  -  j
) )
2423adantl 277 . . . 4  |-  ( ( j  e.  ( 0 ... N )  /\  k  e.  ( 0 ... ( N  -  j ) ) )  ->  k  <_  ( N  -  j )
)
2522, 6, 9, 24lesubd 8504 . . 3  |-  ( ( j  e.  ( 0 ... N )  /\  k  e.  ( 0 ... ( N  -  j ) ) )  ->  j  <_  ( N  -  k )
)
26 elfzuz 10018 . . . . 5  |-  ( j  e.  ( 0 ... N )  ->  j  e.  ( ZZ>= `  0 )
)
2726adantr 276 . . . 4  |-  ( ( j  e.  ( 0 ... N )  /\  k  e.  ( 0 ... ( N  -  j ) ) )  ->  j  e.  (
ZZ>= `  0 ) )
285, 21zsubcld 9378 . . . 4  |-  ( ( j  e.  ( 0 ... N )  /\  k  e.  ( 0 ... ( N  -  j ) ) )  ->  ( N  -  k )  e.  ZZ )
29 elfz5 10014 . . . 4  |-  ( ( j  e.  ( ZZ>= ` 
0 )  /\  ( N  -  k )  e.  ZZ )  ->  (
j  e.  ( 0 ... ( N  -  k ) )  <->  j  <_  ( N  -  k ) ) )
3027, 28, 29syl2anc 411 . . 3  |-  ( ( j  e.  ( 0 ... N )  /\  k  e.  ( 0 ... ( N  -  j ) ) )  ->  ( j  e.  ( 0 ... ( N  -  k )
)  <->  j  <_  ( N  -  k )
) )
3125, 30mpbird 167 . 2  |-  ( ( j  e.  ( 0 ... N )  /\  k  e.  ( 0 ... ( N  -  j ) ) )  ->  j  e.  ( 0 ... ( N  -  k ) ) )
3219, 31jca 306 1  |-  ( ( j  e.  ( 0 ... N )  /\  k  e.  ( 0 ... ( N  -  j ) ) )  ->  ( k  e.  ( 0 ... N
)  /\  j  e.  ( 0 ... ( N  -  k )
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    e. wcel 2148    C_ wss 3129   class class class wbr 4003   ` cfv 5216  (class class class)co 5874   0cc0 7810    <_ cle 7991    - cmin 8126   NN0cn0 9174   ZZcz 9251   ZZ>=cuz 9526   ...cfz 10006
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4121  ax-pow 4174  ax-pr 4209  ax-un 4433  ax-setind 4536  ax-cnex 7901  ax-resscn 7902  ax-1cn 7903  ax-1re 7904  ax-icn 7905  ax-addcl 7906  ax-addrcl 7907  ax-mulcl 7908  ax-addcom 7910  ax-addass 7912  ax-distr 7914  ax-i2m1 7915  ax-0lt1 7916  ax-0id 7918  ax-rnegex 7919  ax-cnre 7921  ax-pre-ltirr 7922  ax-pre-ltwlin 7923  ax-pre-lttrn 7924  ax-pre-ltadd 7926
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2739  df-sbc 2963  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-int 3845  df-br 4004  df-opab 4065  df-mpt 4066  df-id 4293  df-xp 4632  df-rel 4633  df-cnv 4634  df-co 4635  df-dm 4636  df-rn 4637  df-res 4638  df-ima 4639  df-iota 5178  df-fun 5218  df-fn 5219  df-f 5220  df-fv 5224  df-riota 5830  df-ov 5877  df-oprab 5878  df-mpo 5879  df-pnf 7992  df-mnf 7993  df-xr 7994  df-ltxr 7995  df-le 7996  df-sub 8128  df-neg 8129  df-inn 8918  df-n0 9175  df-z 9252  df-uz 9527  df-fz 10007
This theorem is referenced by:  fisum0diag  11444  fprod0diagfz  11631
  Copyright terms: Public domain W3C validator