ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fsum0diaglem Unicode version

Theorem fsum0diaglem 11403
Description: Lemma for fisum0diag 11404. (Contributed by Mario Carneiro, 28-Apr-2014.) (Revised by Mario Carneiro, 8-Apr-2016.)
Assertion
Ref Expression
fsum0diaglem  |-  ( ( j  e.  ( 0 ... N )  /\  k  e.  ( 0 ... ( N  -  j ) ) )  ->  ( k  e.  ( 0 ... N
)  /\  j  e.  ( 0 ... ( N  -  k )
) ) )
Distinct variable group:    j, k, N

Proof of Theorem fsum0diaglem
StepHypRef Expression
1 elfzle1 9983 . . . . . . 7  |-  ( j  e.  ( 0 ... N )  ->  0  <_  j )
21adantr 274 . . . . . 6  |-  ( ( j  e.  ( 0 ... N )  /\  k  e.  ( 0 ... ( N  -  j ) ) )  ->  0  <_  j
)
3 elfz3nn0 10071 . . . . . . . . . 10  |-  ( j  e.  ( 0 ... N )  ->  N  e.  NN0 )
43adantr 274 . . . . . . . . 9  |-  ( ( j  e.  ( 0 ... N )  /\  k  e.  ( 0 ... ( N  -  j ) ) )  ->  N  e.  NN0 )
54nn0zd 9332 . . . . . . . 8  |-  ( ( j  e.  ( 0 ... N )  /\  k  e.  ( 0 ... ( N  -  j ) ) )  ->  N  e.  ZZ )
65zred 9334 . . . . . . 7  |-  ( ( j  e.  ( 0 ... N )  /\  k  e.  ( 0 ... ( N  -  j ) ) )  ->  N  e.  RR )
7 elfzelz 9981 . . . . . . . . 9  |-  ( j  e.  ( 0 ... N )  ->  j  e.  ZZ )
87adantr 274 . . . . . . . 8  |-  ( ( j  e.  ( 0 ... N )  /\  k  e.  ( 0 ... ( N  -  j ) ) )  ->  j  e.  ZZ )
98zred 9334 . . . . . . 7  |-  ( ( j  e.  ( 0 ... N )  /\  k  e.  ( 0 ... ( N  -  j ) ) )  ->  j  e.  RR )
106, 9subge02d 8456 . . . . . 6  |-  ( ( j  e.  ( 0 ... N )  /\  k  e.  ( 0 ... ( N  -  j ) ) )  ->  ( 0  <_ 
j  <->  ( N  -  j )  <_  N
) )
112, 10mpbid 146 . . . . 5  |-  ( ( j  e.  ( 0 ... N )  /\  k  e.  ( 0 ... ( N  -  j ) ) )  ->  ( N  -  j )  <_  N
)
125, 8zsubcld 9339 . . . . . 6  |-  ( ( j  e.  ( 0 ... N )  /\  k  e.  ( 0 ... ( N  -  j ) ) )  ->  ( N  -  j )  e.  ZZ )
13 eluz 9500 . . . . . 6  |-  ( ( ( N  -  j
)  e.  ZZ  /\  N  e.  ZZ )  ->  ( N  e.  (
ZZ>= `  ( N  -  j ) )  <->  ( N  -  j )  <_  N ) )
1412, 5, 13syl2anc 409 . . . . 5  |-  ( ( j  e.  ( 0 ... N )  /\  k  e.  ( 0 ... ( N  -  j ) ) )  ->  ( N  e.  ( ZZ>= `  ( N  -  j ) )  <-> 
( N  -  j
)  <_  N )
)
1511, 14mpbird 166 . . . 4  |-  ( ( j  e.  ( 0 ... N )  /\  k  e.  ( 0 ... ( N  -  j ) ) )  ->  N  e.  (
ZZ>= `  ( N  -  j ) ) )
16 fzss2 10020 . . . 4  |-  ( N  e.  ( ZZ>= `  ( N  -  j )
)  ->  ( 0 ... ( N  -  j ) )  C_  ( 0 ... N
) )
1715, 16syl 14 . . 3  |-  ( ( j  e.  ( 0 ... N )  /\  k  e.  ( 0 ... ( N  -  j ) ) )  ->  ( 0 ... ( N  -  j
) )  C_  (
0 ... N ) )
18 simpr 109 . . 3  |-  ( ( j  e.  ( 0 ... N )  /\  k  e.  ( 0 ... ( N  -  j ) ) )  ->  k  e.  ( 0 ... ( N  -  j ) ) )
1917, 18sseldd 3148 . 2  |-  ( ( j  e.  ( 0 ... N )  /\  k  e.  ( 0 ... ( N  -  j ) ) )  ->  k  e.  ( 0 ... N ) )
20 elfzelz 9981 . . . . . 6  |-  ( k  e.  ( 0 ... ( N  -  j
) )  ->  k  e.  ZZ )
2120adantl 275 . . . . 5  |-  ( ( j  e.  ( 0 ... N )  /\  k  e.  ( 0 ... ( N  -  j ) ) )  ->  k  e.  ZZ )
2221zred 9334 . . . 4  |-  ( ( j  e.  ( 0 ... N )  /\  k  e.  ( 0 ... ( N  -  j ) ) )  ->  k  e.  RR )
23 elfzle2 9984 . . . . 5  |-  ( k  e.  ( 0 ... ( N  -  j
) )  ->  k  <_  ( N  -  j
) )
2423adantl 275 . . . 4  |-  ( ( j  e.  ( 0 ... N )  /\  k  e.  ( 0 ... ( N  -  j ) ) )  ->  k  <_  ( N  -  j )
)
2522, 6, 9, 24lesubd 8468 . . 3  |-  ( ( j  e.  ( 0 ... N )  /\  k  e.  ( 0 ... ( N  -  j ) ) )  ->  j  <_  ( N  -  k )
)
26 elfzuz 9977 . . . . 5  |-  ( j  e.  ( 0 ... N )  ->  j  e.  ( ZZ>= `  0 )
)
2726adantr 274 . . . 4  |-  ( ( j  e.  ( 0 ... N )  /\  k  e.  ( 0 ... ( N  -  j ) ) )  ->  j  e.  (
ZZ>= `  0 ) )
285, 21zsubcld 9339 . . . 4  |-  ( ( j  e.  ( 0 ... N )  /\  k  e.  ( 0 ... ( N  -  j ) ) )  ->  ( N  -  k )  e.  ZZ )
29 elfz5 9973 . . . 4  |-  ( ( j  e.  ( ZZ>= ` 
0 )  /\  ( N  -  k )  e.  ZZ )  ->  (
j  e.  ( 0 ... ( N  -  k ) )  <->  j  <_  ( N  -  k ) ) )
3027, 28, 29syl2anc 409 . . 3  |-  ( ( j  e.  ( 0 ... N )  /\  k  e.  ( 0 ... ( N  -  j ) ) )  ->  ( j  e.  ( 0 ... ( N  -  k )
)  <->  j  <_  ( N  -  k )
) )
3125, 30mpbird 166 . 2  |-  ( ( j  e.  ( 0 ... N )  /\  k  e.  ( 0 ... ( N  -  j ) ) )  ->  j  e.  ( 0 ... ( N  -  k ) ) )
3219, 31jca 304 1  |-  ( ( j  e.  ( 0 ... N )  /\  k  e.  ( 0 ... ( N  -  j ) ) )  ->  ( k  e.  ( 0 ... N
)  /\  j  e.  ( 0 ... ( N  -  k )
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    e. wcel 2141    C_ wss 3121   class class class wbr 3989   ` cfv 5198  (class class class)co 5853   0cc0 7774    <_ cle 7955    - cmin 8090   NN0cn0 9135   ZZcz 9212   ZZ>=cuz 9487   ...cfz 9965
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-addcom 7874  ax-addass 7876  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-0id 7882  ax-rnegex 7883  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-ltadd 7890
This theorem depends on definitions:  df-bi 116  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-inn 8879  df-n0 9136  df-z 9213  df-uz 9488  df-fz 9966
This theorem is referenced by:  fisum0diag  11404  fprod0diagfz  11591
  Copyright terms: Public domain W3C validator