ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fisum0diag Unicode version

Theorem fisum0diag 11391
Description: Two ways to express "the sum of  A ( j ,  k ) over the triangular region  M  <_  j,  M  <_  k,  j  +  k  <_  N". (Contributed by NM, 31-Dec-2005.) (Proof shortened by Mario Carneiro, 28-Apr-2014.) (Revised by Mario Carneiro, 8-Apr-2016.)
Hypotheses
Ref Expression
fsum0diag.1  |-  ( (
ph  /\  ( j  e.  ( 0 ... N
)  /\  k  e.  ( 0 ... ( N  -  j )
) ) )  ->  A  e.  CC )
fisum0diag.n  |-  ( ph  ->  N  e.  ZZ )
Assertion
Ref Expression
fisum0diag  |-  ( ph  -> 
sum_ j  e.  ( 0 ... N )
sum_ k  e.  ( 0 ... ( N  -  j ) ) A  =  sum_ k  e.  ( 0 ... N
) sum_ j  e.  ( 0 ... ( N  -  k ) ) A )
Distinct variable groups:    j, k, N    ph, j, k
Allowed substitution hints:    A( j, k)

Proof of Theorem fisum0diag
StepHypRef Expression
1 0zd 9211 . . 3  |-  ( ph  ->  0  e.  ZZ )
2 fisum0diag.n . . 3  |-  ( ph  ->  N  e.  ZZ )
31, 2fzfigd 10374 . 2  |-  ( ph  ->  ( 0 ... N
)  e.  Fin )
4 0zd 9211 . . 3  |-  ( (
ph  /\  j  e.  ( 0 ... N
) )  ->  0  e.  ZZ )
52adantr 274 . . . 4  |-  ( (
ph  /\  j  e.  ( 0 ... N
) )  ->  N  e.  ZZ )
6 elfzelz 9968 . . . . 5  |-  ( j  e.  ( 0 ... N )  ->  j  e.  ZZ )
76adantl 275 . . . 4  |-  ( (
ph  /\  j  e.  ( 0 ... N
) )  ->  j  e.  ZZ )
85, 7zsubcld 9326 . . 3  |-  ( (
ph  /\  j  e.  ( 0 ... N
) )  ->  ( N  -  j )  e.  ZZ )
94, 8fzfigd 10374 . 2  |-  ( (
ph  /\  j  e.  ( 0 ... N
) )  ->  (
0 ... ( N  -  j ) )  e. 
Fin )
10 0zd 9211 . . 3  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  0  e.  ZZ )
112adantr 274 . . . 4  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  N  e.  ZZ )
12 elfzelz 9968 . . . . 5  |-  ( k  e.  ( 0 ... N )  ->  k  e.  ZZ )
1312adantl 275 . . . 4  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  k  e.  ZZ )
1411, 13zsubcld 9326 . . 3  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  ( N  -  k )  e.  ZZ )
1510, 14fzfigd 10374 . 2  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  (
0 ... ( N  -  k ) )  e. 
Fin )
16 fsum0diaglem 11390 . . . 4  |-  ( ( j  e.  ( 0 ... N )  /\  k  e.  ( 0 ... ( N  -  j ) ) )  ->  ( k  e.  ( 0 ... N
)  /\  j  e.  ( 0 ... ( N  -  k )
) ) )
17 fsum0diaglem 11390 . . . 4  |-  ( ( k  e.  ( 0 ... N )  /\  j  e.  ( 0 ... ( N  -  k ) ) )  ->  ( j  e.  ( 0 ... N
)  /\  k  e.  ( 0 ... ( N  -  j )
) ) )
1816, 17impbii 125 . . 3  |-  ( ( j  e.  ( 0 ... N )  /\  k  e.  ( 0 ... ( N  -  j ) ) )  <-> 
( k  e.  ( 0 ... N )  /\  j  e.  ( 0 ... ( N  -  k ) ) ) )
1918a1i 9 . 2  |-  ( ph  ->  ( ( j  e.  ( 0 ... N
)  /\  k  e.  ( 0 ... ( N  -  j )
) )  <->  ( k  e.  ( 0 ... N
)  /\  j  e.  ( 0 ... ( N  -  k )
) ) ) )
20 fsum0diag.1 . 2  |-  ( (
ph  /\  ( j  e.  ( 0 ... N
)  /\  k  e.  ( 0 ... ( N  -  j )
) ) )  ->  A  e.  CC )
213, 3, 9, 15, 19, 20fisumcom2 11388 1  |-  ( ph  -> 
sum_ j  e.  ( 0 ... N )
sum_ k  e.  ( 0 ... ( N  -  j ) ) A  =  sum_ k  e.  ( 0 ... N
) sum_ j  e.  ( 0 ... ( N  -  k ) ) A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1348    e. wcel 2141  (class class class)co 5850   CCcc 7759   0cc0 7761    - cmin 8077   ZZcz 9199   ...cfz 9952   sum_csu 11303
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4102  ax-sep 4105  ax-nul 4113  ax-pow 4158  ax-pr 4192  ax-un 4416  ax-setind 4519  ax-iinf 4570  ax-cnex 7852  ax-resscn 7853  ax-1cn 7854  ax-1re 7855  ax-icn 7856  ax-addcl 7857  ax-addrcl 7858  ax-mulcl 7859  ax-mulrcl 7860  ax-addcom 7861  ax-mulcom 7862  ax-addass 7863  ax-mulass 7864  ax-distr 7865  ax-i2m1 7866  ax-0lt1 7867  ax-1rid 7868  ax-0id 7869  ax-rnegex 7870  ax-precex 7871  ax-cnre 7872  ax-pre-ltirr 7873  ax-pre-ltwlin 7874  ax-pre-lttrn 7875  ax-pre-apti 7876  ax-pre-ltadd 7877  ax-pre-mulgt0 7878  ax-pre-mulext 7879  ax-arch 7880  ax-caucvg 7881
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3526  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-int 3830  df-iun 3873  df-disj 3965  df-br 3988  df-opab 4049  df-mpt 4050  df-tr 4086  df-id 4276  df-po 4279  df-iso 4280  df-iord 4349  df-on 4351  df-ilim 4352  df-suc 4354  df-iom 4573  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-rn 4620  df-res 4621  df-ima 4622  df-iota 5158  df-fun 5198  df-fn 5199  df-f 5200  df-f1 5201  df-fo 5202  df-f1o 5203  df-fv 5204  df-isom 5205  df-riota 5806  df-ov 5853  df-oprab 5854  df-mpo 5855  df-1st 6116  df-2nd 6117  df-recs 6281  df-irdg 6346  df-frec 6367  df-1o 6392  df-oadd 6396  df-er 6509  df-en 6715  df-dom 6716  df-fin 6717  df-pnf 7943  df-mnf 7944  df-xr 7945  df-ltxr 7946  df-le 7947  df-sub 8079  df-neg 8080  df-reap 8481  df-ap 8488  df-div 8577  df-inn 8866  df-2 8924  df-3 8925  df-4 8926  df-n0 9123  df-z 9200  df-uz 9475  df-q 9566  df-rp 9598  df-fz 9953  df-fzo 10086  df-seqfrec 10389  df-exp 10463  df-ihash 10697  df-cj 10793  df-re 10794  df-im 10795  df-rsqrt 10949  df-abs 10950  df-clim 11229  df-sumdc 11304
This theorem is referenced by:  fisum0diag2  11397
  Copyright terms: Public domain W3C validator