![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > zsubcld | Unicode version |
Description: Closure of subtraction of integers. (Contributed by Mario Carneiro, 28-May-2016.) |
Ref | Expression |
---|---|
zred.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
zaddcld.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
zsubcld |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zred.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | zaddcld.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | zsubcl 8789 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 1, 2, 3 | syl2anc 403 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 579 ax-in2 580 ax-io 665 ax-5 1381 ax-7 1382 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-8 1440 ax-10 1441 ax-11 1442 ax-i12 1443 ax-bndl 1444 ax-4 1445 ax-13 1449 ax-14 1450 ax-17 1464 ax-i9 1468 ax-ial 1472 ax-i5r 1473 ax-ext 2070 ax-sep 3957 ax-pow 4009 ax-pr 4036 ax-un 4260 ax-setind 4353 ax-cnex 7434 ax-resscn 7435 ax-1cn 7436 ax-1re 7437 ax-icn 7438 ax-addcl 7439 ax-addrcl 7440 ax-mulcl 7441 ax-addcom 7443 ax-addass 7445 ax-distr 7447 ax-i2m1 7448 ax-0lt1 7449 ax-0id 7451 ax-rnegex 7452 ax-cnre 7454 ax-pre-ltirr 7455 ax-pre-ltwlin 7456 ax-pre-lttrn 7457 ax-pre-ltadd 7459 |
This theorem depends on definitions: df-bi 115 df-3or 925 df-3an 926 df-tru 1292 df-fal 1295 df-nf 1395 df-sb 1693 df-eu 1951 df-mo 1952 df-clab 2075 df-cleq 2081 df-clel 2084 df-nfc 2217 df-ne 2256 df-nel 2351 df-ral 2364 df-rex 2365 df-reu 2366 df-rab 2368 df-v 2621 df-sbc 2841 df-dif 3001 df-un 3003 df-in 3005 df-ss 3012 df-pw 3431 df-sn 3452 df-pr 3453 df-op 3455 df-uni 3654 df-int 3689 df-br 3846 df-opab 3900 df-id 4120 df-xp 4444 df-rel 4445 df-cnv 4446 df-co 4447 df-dm 4448 df-iota 4980 df-fun 5017 df-fv 5023 df-riota 5608 df-ov 5655 df-oprab 5656 df-mpt2 5657 df-pnf 7522 df-mnf 7523 df-xr 7524 df-ltxr 7525 df-le 7526 df-sub 7653 df-neg 7654 df-inn 8421 df-n0 8672 df-z 8749 |
This theorem is referenced by: eluzsub 9046 uzm1 9047 uzsubsubfz 9459 fzm1 9510 eluzgtdifelfzo 9604 ubmelm1fzo 9633 intfracq 9723 modqsubdir 9796 modsumfzodifsn 9799 addmodlteq 9801 seq3f1olemqsumkj 9923 zesq 10068 ibcval5 10167 hashfz 10225 seq3shft 10268 resqrexlemnmsq 10446 resqrexlemcvg 10448 fzomaxdiflem 10541 fsum0diaglem 10830 fisum0diag 10831 mptfzshft 10832 fsumrev 10833 fsumshft 10834 fisum0diag2 10837 geo2sum 10904 cvgratnnlemabsle 10917 cvgratnnlemsumlt 10918 cvgratz 10922 mertenslemub 10924 mertenslemi1 10925 mertenslem2 10926 mertensabs 10927 eirraplem 11060 fzocongeq 11133 modremain 11203 bezoutlemnewy 11259 cncongr1 11359 prmind2 11376 pw2dvds 11418 hashdvds 11471 phiprmpw 11472 crth 11474 |
Copyright terms: Public domain | W3C validator |