ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fsum0diaglem GIF version

Theorem fsum0diaglem 11466
Description: Lemma for fisum0diag 11467. (Contributed by Mario Carneiro, 28-Apr-2014.) (Revised by Mario Carneiro, 8-Apr-2016.)
Assertion
Ref Expression
fsum0diaglem ((𝑗 ∈ (0...𝑁) ∧ 𝑘 ∈ (0...(𝑁𝑗))) → (𝑘 ∈ (0...𝑁) ∧ 𝑗 ∈ (0...(𝑁𝑘))))
Distinct variable group:   𝑗,𝑘,𝑁

Proof of Theorem fsum0diaglem
StepHypRef Expression
1 elfzle1 10045 . . . . . . 7 (𝑗 ∈ (0...𝑁) → 0 ≤ 𝑗)
21adantr 276 . . . . . 6 ((𝑗 ∈ (0...𝑁) ∧ 𝑘 ∈ (0...(𝑁𝑗))) → 0 ≤ 𝑗)
3 elfz3nn0 10133 . . . . . . . . . 10 (𝑗 ∈ (0...𝑁) → 𝑁 ∈ ℕ0)
43adantr 276 . . . . . . . . 9 ((𝑗 ∈ (0...𝑁) ∧ 𝑘 ∈ (0...(𝑁𝑗))) → 𝑁 ∈ ℕ0)
54nn0zd 9391 . . . . . . . 8 ((𝑗 ∈ (0...𝑁) ∧ 𝑘 ∈ (0...(𝑁𝑗))) → 𝑁 ∈ ℤ)
65zred 9393 . . . . . . 7 ((𝑗 ∈ (0...𝑁) ∧ 𝑘 ∈ (0...(𝑁𝑗))) → 𝑁 ∈ ℝ)
7 elfzelz 10043 . . . . . . . . 9 (𝑗 ∈ (0...𝑁) → 𝑗 ∈ ℤ)
87adantr 276 . . . . . . . 8 ((𝑗 ∈ (0...𝑁) ∧ 𝑘 ∈ (0...(𝑁𝑗))) → 𝑗 ∈ ℤ)
98zred 9393 . . . . . . 7 ((𝑗 ∈ (0...𝑁) ∧ 𝑘 ∈ (0...(𝑁𝑗))) → 𝑗 ∈ ℝ)
106, 9subge02d 8512 . . . . . 6 ((𝑗 ∈ (0...𝑁) ∧ 𝑘 ∈ (0...(𝑁𝑗))) → (0 ≤ 𝑗 ↔ (𝑁𝑗) ≤ 𝑁))
112, 10mpbid 147 . . . . 5 ((𝑗 ∈ (0...𝑁) ∧ 𝑘 ∈ (0...(𝑁𝑗))) → (𝑁𝑗) ≤ 𝑁)
125, 8zsubcld 9398 . . . . . 6 ((𝑗 ∈ (0...𝑁) ∧ 𝑘 ∈ (0...(𝑁𝑗))) → (𝑁𝑗) ∈ ℤ)
13 eluz 9559 . . . . . 6 (((𝑁𝑗) ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈ (ℤ‘(𝑁𝑗)) ↔ (𝑁𝑗) ≤ 𝑁))
1412, 5, 13syl2anc 411 . . . . 5 ((𝑗 ∈ (0...𝑁) ∧ 𝑘 ∈ (0...(𝑁𝑗))) → (𝑁 ∈ (ℤ‘(𝑁𝑗)) ↔ (𝑁𝑗) ≤ 𝑁))
1511, 14mpbird 167 . . . 4 ((𝑗 ∈ (0...𝑁) ∧ 𝑘 ∈ (0...(𝑁𝑗))) → 𝑁 ∈ (ℤ‘(𝑁𝑗)))
16 fzss2 10082 . . . 4 (𝑁 ∈ (ℤ‘(𝑁𝑗)) → (0...(𝑁𝑗)) ⊆ (0...𝑁))
1715, 16syl 14 . . 3 ((𝑗 ∈ (0...𝑁) ∧ 𝑘 ∈ (0...(𝑁𝑗))) → (0...(𝑁𝑗)) ⊆ (0...𝑁))
18 simpr 110 . . 3 ((𝑗 ∈ (0...𝑁) ∧ 𝑘 ∈ (0...(𝑁𝑗))) → 𝑘 ∈ (0...(𝑁𝑗)))
1917, 18sseldd 3171 . 2 ((𝑗 ∈ (0...𝑁) ∧ 𝑘 ∈ (0...(𝑁𝑗))) → 𝑘 ∈ (0...𝑁))
20 elfzelz 10043 . . . . . 6 (𝑘 ∈ (0...(𝑁𝑗)) → 𝑘 ∈ ℤ)
2120adantl 277 . . . . 5 ((𝑗 ∈ (0...𝑁) ∧ 𝑘 ∈ (0...(𝑁𝑗))) → 𝑘 ∈ ℤ)
2221zred 9393 . . . 4 ((𝑗 ∈ (0...𝑁) ∧ 𝑘 ∈ (0...(𝑁𝑗))) → 𝑘 ∈ ℝ)
23 elfzle2 10046 . . . . 5 (𝑘 ∈ (0...(𝑁𝑗)) → 𝑘 ≤ (𝑁𝑗))
2423adantl 277 . . . 4 ((𝑗 ∈ (0...𝑁) ∧ 𝑘 ∈ (0...(𝑁𝑗))) → 𝑘 ≤ (𝑁𝑗))
2522, 6, 9, 24lesubd 8524 . . 3 ((𝑗 ∈ (0...𝑁) ∧ 𝑘 ∈ (0...(𝑁𝑗))) → 𝑗 ≤ (𝑁𝑘))
26 elfzuz 10039 . . . . 5 (𝑗 ∈ (0...𝑁) → 𝑗 ∈ (ℤ‘0))
2726adantr 276 . . . 4 ((𝑗 ∈ (0...𝑁) ∧ 𝑘 ∈ (0...(𝑁𝑗))) → 𝑗 ∈ (ℤ‘0))
285, 21zsubcld 9398 . . . 4 ((𝑗 ∈ (0...𝑁) ∧ 𝑘 ∈ (0...(𝑁𝑗))) → (𝑁𝑘) ∈ ℤ)
29 elfz5 10035 . . . 4 ((𝑗 ∈ (ℤ‘0) ∧ (𝑁𝑘) ∈ ℤ) → (𝑗 ∈ (0...(𝑁𝑘)) ↔ 𝑗 ≤ (𝑁𝑘)))
3027, 28, 29syl2anc 411 . . 3 ((𝑗 ∈ (0...𝑁) ∧ 𝑘 ∈ (0...(𝑁𝑗))) → (𝑗 ∈ (0...(𝑁𝑘)) ↔ 𝑗 ≤ (𝑁𝑘)))
3125, 30mpbird 167 . 2 ((𝑗 ∈ (0...𝑁) ∧ 𝑘 ∈ (0...(𝑁𝑗))) → 𝑗 ∈ (0...(𝑁𝑘)))
3219, 31jca 306 1 ((𝑗 ∈ (0...𝑁) ∧ 𝑘 ∈ (0...(𝑁𝑗))) → (𝑘 ∈ (0...𝑁) ∧ 𝑗 ∈ (0...(𝑁𝑘))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wcel 2160  wss 3144   class class class wbr 4018  cfv 5231  (class class class)co 5891  0cc0 7829  cle 8011  cmin 8146  0cn0 9194  cz 9271  cuz 9546  ...cfz 10026
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4189  ax-pr 4224  ax-un 4448  ax-setind 4551  ax-cnex 7920  ax-resscn 7921  ax-1cn 7922  ax-1re 7923  ax-icn 7924  ax-addcl 7925  ax-addrcl 7926  ax-mulcl 7927  ax-addcom 7929  ax-addass 7931  ax-distr 7933  ax-i2m1 7934  ax-0lt1 7935  ax-0id 7937  ax-rnegex 7938  ax-cnre 7940  ax-pre-ltirr 7941  ax-pre-ltwlin 7942  ax-pre-lttrn 7943  ax-pre-ltadd 7945
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rab 2477  df-v 2754  df-sbc 2978  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4308  df-xp 4647  df-rel 4648  df-cnv 4649  df-co 4650  df-dm 4651  df-rn 4652  df-res 4653  df-ima 4654  df-iota 5193  df-fun 5233  df-fn 5234  df-f 5235  df-fv 5239  df-riota 5847  df-ov 5894  df-oprab 5895  df-mpo 5896  df-pnf 8012  df-mnf 8013  df-xr 8014  df-ltxr 8015  df-le 8016  df-sub 8148  df-neg 8149  df-inn 8938  df-n0 9195  df-z 9272  df-uz 9547  df-fz 10027
This theorem is referenced by:  fisum0diag  11467  fprod0diagfz  11654
  Copyright terms: Public domain W3C validator