ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fsum0diaglem GIF version

Theorem fsum0diaglem 11583
Description: Lemma for fisum0diag 11584. (Contributed by Mario Carneiro, 28-Apr-2014.) (Revised by Mario Carneiro, 8-Apr-2016.)
Assertion
Ref Expression
fsum0diaglem ((𝑗 ∈ (0...𝑁) ∧ 𝑘 ∈ (0...(𝑁𝑗))) → (𝑘 ∈ (0...𝑁) ∧ 𝑗 ∈ (0...(𝑁𝑘))))
Distinct variable group:   𝑗,𝑘,𝑁

Proof of Theorem fsum0diaglem
StepHypRef Expression
1 elfzle1 10093 . . . . . . 7 (𝑗 ∈ (0...𝑁) → 0 ≤ 𝑗)
21adantr 276 . . . . . 6 ((𝑗 ∈ (0...𝑁) ∧ 𝑘 ∈ (0...(𝑁𝑗))) → 0 ≤ 𝑗)
3 elfz3nn0 10181 . . . . . . . . . 10 (𝑗 ∈ (0...𝑁) → 𝑁 ∈ ℕ0)
43adantr 276 . . . . . . . . 9 ((𝑗 ∈ (0...𝑁) ∧ 𝑘 ∈ (0...(𝑁𝑗))) → 𝑁 ∈ ℕ0)
54nn0zd 9437 . . . . . . . 8 ((𝑗 ∈ (0...𝑁) ∧ 𝑘 ∈ (0...(𝑁𝑗))) → 𝑁 ∈ ℤ)
65zred 9439 . . . . . . 7 ((𝑗 ∈ (0...𝑁) ∧ 𝑘 ∈ (0...(𝑁𝑗))) → 𝑁 ∈ ℝ)
7 elfzelz 10091 . . . . . . . . 9 (𝑗 ∈ (0...𝑁) → 𝑗 ∈ ℤ)
87adantr 276 . . . . . . . 8 ((𝑗 ∈ (0...𝑁) ∧ 𝑘 ∈ (0...(𝑁𝑗))) → 𝑗 ∈ ℤ)
98zred 9439 . . . . . . 7 ((𝑗 ∈ (0...𝑁) ∧ 𝑘 ∈ (0...(𝑁𝑗))) → 𝑗 ∈ ℝ)
106, 9subge02d 8556 . . . . . 6 ((𝑗 ∈ (0...𝑁) ∧ 𝑘 ∈ (0...(𝑁𝑗))) → (0 ≤ 𝑗 ↔ (𝑁𝑗) ≤ 𝑁))
112, 10mpbid 147 . . . . 5 ((𝑗 ∈ (0...𝑁) ∧ 𝑘 ∈ (0...(𝑁𝑗))) → (𝑁𝑗) ≤ 𝑁)
125, 8zsubcld 9444 . . . . . 6 ((𝑗 ∈ (0...𝑁) ∧ 𝑘 ∈ (0...(𝑁𝑗))) → (𝑁𝑗) ∈ ℤ)
13 eluz 9605 . . . . . 6 (((𝑁𝑗) ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈ (ℤ‘(𝑁𝑗)) ↔ (𝑁𝑗) ≤ 𝑁))
1412, 5, 13syl2anc 411 . . . . 5 ((𝑗 ∈ (0...𝑁) ∧ 𝑘 ∈ (0...(𝑁𝑗))) → (𝑁 ∈ (ℤ‘(𝑁𝑗)) ↔ (𝑁𝑗) ≤ 𝑁))
1511, 14mpbird 167 . . . 4 ((𝑗 ∈ (0...𝑁) ∧ 𝑘 ∈ (0...(𝑁𝑗))) → 𝑁 ∈ (ℤ‘(𝑁𝑗)))
16 fzss2 10130 . . . 4 (𝑁 ∈ (ℤ‘(𝑁𝑗)) → (0...(𝑁𝑗)) ⊆ (0...𝑁))
1715, 16syl 14 . . 3 ((𝑗 ∈ (0...𝑁) ∧ 𝑘 ∈ (0...(𝑁𝑗))) → (0...(𝑁𝑗)) ⊆ (0...𝑁))
18 simpr 110 . . 3 ((𝑗 ∈ (0...𝑁) ∧ 𝑘 ∈ (0...(𝑁𝑗))) → 𝑘 ∈ (0...(𝑁𝑗)))
1917, 18sseldd 3180 . 2 ((𝑗 ∈ (0...𝑁) ∧ 𝑘 ∈ (0...(𝑁𝑗))) → 𝑘 ∈ (0...𝑁))
20 elfzelz 10091 . . . . . 6 (𝑘 ∈ (0...(𝑁𝑗)) → 𝑘 ∈ ℤ)
2120adantl 277 . . . . 5 ((𝑗 ∈ (0...𝑁) ∧ 𝑘 ∈ (0...(𝑁𝑗))) → 𝑘 ∈ ℤ)
2221zred 9439 . . . 4 ((𝑗 ∈ (0...𝑁) ∧ 𝑘 ∈ (0...(𝑁𝑗))) → 𝑘 ∈ ℝ)
23 elfzle2 10094 . . . . 5 (𝑘 ∈ (0...(𝑁𝑗)) → 𝑘 ≤ (𝑁𝑗))
2423adantl 277 . . . 4 ((𝑗 ∈ (0...𝑁) ∧ 𝑘 ∈ (0...(𝑁𝑗))) → 𝑘 ≤ (𝑁𝑗))
2522, 6, 9, 24lesubd 8568 . . 3 ((𝑗 ∈ (0...𝑁) ∧ 𝑘 ∈ (0...(𝑁𝑗))) → 𝑗 ≤ (𝑁𝑘))
26 elfzuz 10087 . . . . 5 (𝑗 ∈ (0...𝑁) → 𝑗 ∈ (ℤ‘0))
2726adantr 276 . . . 4 ((𝑗 ∈ (0...𝑁) ∧ 𝑘 ∈ (0...(𝑁𝑗))) → 𝑗 ∈ (ℤ‘0))
285, 21zsubcld 9444 . . . 4 ((𝑗 ∈ (0...𝑁) ∧ 𝑘 ∈ (0...(𝑁𝑗))) → (𝑁𝑘) ∈ ℤ)
29 elfz5 10083 . . . 4 ((𝑗 ∈ (ℤ‘0) ∧ (𝑁𝑘) ∈ ℤ) → (𝑗 ∈ (0...(𝑁𝑘)) ↔ 𝑗 ≤ (𝑁𝑘)))
3027, 28, 29syl2anc 411 . . 3 ((𝑗 ∈ (0...𝑁) ∧ 𝑘 ∈ (0...(𝑁𝑗))) → (𝑗 ∈ (0...(𝑁𝑘)) ↔ 𝑗 ≤ (𝑁𝑘)))
3125, 30mpbird 167 . 2 ((𝑗 ∈ (0...𝑁) ∧ 𝑘 ∈ (0...(𝑁𝑗))) → 𝑗 ∈ (0...(𝑁𝑘)))
3219, 31jca 306 1 ((𝑗 ∈ (0...𝑁) ∧ 𝑘 ∈ (0...(𝑁𝑗))) → (𝑘 ∈ (0...𝑁) ∧ 𝑗 ∈ (0...(𝑁𝑘))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wcel 2164  wss 3153   class class class wbr 4029  cfv 5254  (class class class)co 5918  0cc0 7872  cle 8055  cmin 8190  0cn0 9240  cz 9317  cuz 9592  ...cfz 10074
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-inn 8983  df-n0 9241  df-z 9318  df-uz 9593  df-fz 10075
This theorem is referenced by:  fisum0diag  11584  fprod0diagfz  11771
  Copyright terms: Public domain W3C validator