ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fsum0diaglem GIF version

Theorem fsum0diaglem 11381
Description: Lemma for fisum0diag 11382. (Contributed by Mario Carneiro, 28-Apr-2014.) (Revised by Mario Carneiro, 8-Apr-2016.)
Assertion
Ref Expression
fsum0diaglem ((𝑗 ∈ (0...𝑁) ∧ 𝑘 ∈ (0...(𝑁𝑗))) → (𝑘 ∈ (0...𝑁) ∧ 𝑗 ∈ (0...(𝑁𝑘))))
Distinct variable group:   𝑗,𝑘,𝑁

Proof of Theorem fsum0diaglem
StepHypRef Expression
1 elfzle1 9962 . . . . . . 7 (𝑗 ∈ (0...𝑁) → 0 ≤ 𝑗)
21adantr 274 . . . . . 6 ((𝑗 ∈ (0...𝑁) ∧ 𝑘 ∈ (0...(𝑁𝑗))) → 0 ≤ 𝑗)
3 elfz3nn0 10050 . . . . . . . . . 10 (𝑗 ∈ (0...𝑁) → 𝑁 ∈ ℕ0)
43adantr 274 . . . . . . . . 9 ((𝑗 ∈ (0...𝑁) ∧ 𝑘 ∈ (0...(𝑁𝑗))) → 𝑁 ∈ ℕ0)
54nn0zd 9311 . . . . . . . 8 ((𝑗 ∈ (0...𝑁) ∧ 𝑘 ∈ (0...(𝑁𝑗))) → 𝑁 ∈ ℤ)
65zred 9313 . . . . . . 7 ((𝑗 ∈ (0...𝑁) ∧ 𝑘 ∈ (0...(𝑁𝑗))) → 𝑁 ∈ ℝ)
7 elfzelz 9960 . . . . . . . . 9 (𝑗 ∈ (0...𝑁) → 𝑗 ∈ ℤ)
87adantr 274 . . . . . . . 8 ((𝑗 ∈ (0...𝑁) ∧ 𝑘 ∈ (0...(𝑁𝑗))) → 𝑗 ∈ ℤ)
98zred 9313 . . . . . . 7 ((𝑗 ∈ (0...𝑁) ∧ 𝑘 ∈ (0...(𝑁𝑗))) → 𝑗 ∈ ℝ)
106, 9subge02d 8435 . . . . . 6 ((𝑗 ∈ (0...𝑁) ∧ 𝑘 ∈ (0...(𝑁𝑗))) → (0 ≤ 𝑗 ↔ (𝑁𝑗) ≤ 𝑁))
112, 10mpbid 146 . . . . 5 ((𝑗 ∈ (0...𝑁) ∧ 𝑘 ∈ (0...(𝑁𝑗))) → (𝑁𝑗) ≤ 𝑁)
125, 8zsubcld 9318 . . . . . 6 ((𝑗 ∈ (0...𝑁) ∧ 𝑘 ∈ (0...(𝑁𝑗))) → (𝑁𝑗) ∈ ℤ)
13 eluz 9479 . . . . . 6 (((𝑁𝑗) ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈ (ℤ‘(𝑁𝑗)) ↔ (𝑁𝑗) ≤ 𝑁))
1412, 5, 13syl2anc 409 . . . . 5 ((𝑗 ∈ (0...𝑁) ∧ 𝑘 ∈ (0...(𝑁𝑗))) → (𝑁 ∈ (ℤ‘(𝑁𝑗)) ↔ (𝑁𝑗) ≤ 𝑁))
1511, 14mpbird 166 . . . 4 ((𝑗 ∈ (0...𝑁) ∧ 𝑘 ∈ (0...(𝑁𝑗))) → 𝑁 ∈ (ℤ‘(𝑁𝑗)))
16 fzss2 9999 . . . 4 (𝑁 ∈ (ℤ‘(𝑁𝑗)) → (0...(𝑁𝑗)) ⊆ (0...𝑁))
1715, 16syl 14 . . 3 ((𝑗 ∈ (0...𝑁) ∧ 𝑘 ∈ (0...(𝑁𝑗))) → (0...(𝑁𝑗)) ⊆ (0...𝑁))
18 simpr 109 . . 3 ((𝑗 ∈ (0...𝑁) ∧ 𝑘 ∈ (0...(𝑁𝑗))) → 𝑘 ∈ (0...(𝑁𝑗)))
1917, 18sseldd 3143 . 2 ((𝑗 ∈ (0...𝑁) ∧ 𝑘 ∈ (0...(𝑁𝑗))) → 𝑘 ∈ (0...𝑁))
20 elfzelz 9960 . . . . . 6 (𝑘 ∈ (0...(𝑁𝑗)) → 𝑘 ∈ ℤ)
2120adantl 275 . . . . 5 ((𝑗 ∈ (0...𝑁) ∧ 𝑘 ∈ (0...(𝑁𝑗))) → 𝑘 ∈ ℤ)
2221zred 9313 . . . 4 ((𝑗 ∈ (0...𝑁) ∧ 𝑘 ∈ (0...(𝑁𝑗))) → 𝑘 ∈ ℝ)
23 elfzle2 9963 . . . . 5 (𝑘 ∈ (0...(𝑁𝑗)) → 𝑘 ≤ (𝑁𝑗))
2423adantl 275 . . . 4 ((𝑗 ∈ (0...𝑁) ∧ 𝑘 ∈ (0...(𝑁𝑗))) → 𝑘 ≤ (𝑁𝑗))
2522, 6, 9, 24lesubd 8447 . . 3 ((𝑗 ∈ (0...𝑁) ∧ 𝑘 ∈ (0...(𝑁𝑗))) → 𝑗 ≤ (𝑁𝑘))
26 elfzuz 9956 . . . . 5 (𝑗 ∈ (0...𝑁) → 𝑗 ∈ (ℤ‘0))
2726adantr 274 . . . 4 ((𝑗 ∈ (0...𝑁) ∧ 𝑘 ∈ (0...(𝑁𝑗))) → 𝑗 ∈ (ℤ‘0))
285, 21zsubcld 9318 . . . 4 ((𝑗 ∈ (0...𝑁) ∧ 𝑘 ∈ (0...(𝑁𝑗))) → (𝑁𝑘) ∈ ℤ)
29 elfz5 9952 . . . 4 ((𝑗 ∈ (ℤ‘0) ∧ (𝑁𝑘) ∈ ℤ) → (𝑗 ∈ (0...(𝑁𝑘)) ↔ 𝑗 ≤ (𝑁𝑘)))
3027, 28, 29syl2anc 409 . . 3 ((𝑗 ∈ (0...𝑁) ∧ 𝑘 ∈ (0...(𝑁𝑗))) → (𝑗 ∈ (0...(𝑁𝑘)) ↔ 𝑗 ≤ (𝑁𝑘)))
3125, 30mpbird 166 . 2 ((𝑗 ∈ (0...𝑁) ∧ 𝑘 ∈ (0...(𝑁𝑗))) → 𝑗 ∈ (0...(𝑁𝑘)))
3219, 31jca 304 1 ((𝑗 ∈ (0...𝑁) ∧ 𝑘 ∈ (0...(𝑁𝑗))) → (𝑘 ∈ (0...𝑁) ∧ 𝑗 ∈ (0...(𝑁𝑘))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wcel 2136  wss 3116   class class class wbr 3982  cfv 5188  (class class class)co 5842  0cc0 7753  cle 7934  cmin 8069  0cn0 9114  cz 9191  cuz 9466  ...cfz 9944
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-addcom 7853  ax-addass 7855  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-0id 7861  ax-rnegex 7862  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-ltadd 7869
This theorem depends on definitions:  df-bi 116  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-inn 8858  df-n0 9115  df-z 9192  df-uz 9467  df-fz 9945
This theorem is referenced by:  fisum0diag  11382  fprod0diagfz  11569
  Copyright terms: Public domain W3C validator