![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fzosplitsn | GIF version |
Description: Extending a half-open range by a singleton on the end. (Contributed by Stefan O'Rear, 23-Aug-2015.) |
Ref | Expression |
---|---|
fzosplitsn | ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (𝐴..^(𝐵 + 1)) = ((𝐴..^𝐵) ∪ {𝐵})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . . . 4 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → 𝐵 ∈ (ℤ≥‘𝐴)) | |
2 | eluzelz 9185 | . . . . 5 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → 𝐵 ∈ ℤ) | |
3 | uzid 9190 | . . . . 5 ⊢ (𝐵 ∈ ℤ → 𝐵 ∈ (ℤ≥‘𝐵)) | |
4 | peano2uz 9228 | . . . . 5 ⊢ (𝐵 ∈ (ℤ≥‘𝐵) → (𝐵 + 1) ∈ (ℤ≥‘𝐵)) | |
5 | 2, 3, 4 | 3syl 17 | . . . 4 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (𝐵 + 1) ∈ (ℤ≥‘𝐵)) |
6 | elfzuzb 9641 | . . . 4 ⊢ (𝐵 ∈ (𝐴...(𝐵 + 1)) ↔ (𝐵 ∈ (ℤ≥‘𝐴) ∧ (𝐵 + 1) ∈ (ℤ≥‘𝐵))) | |
7 | 1, 5, 6 | sylanbrc 411 | . . 3 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → 𝐵 ∈ (𝐴...(𝐵 + 1))) |
8 | fzosplit 9795 | . . 3 ⊢ (𝐵 ∈ (𝐴...(𝐵 + 1)) → (𝐴..^(𝐵 + 1)) = ((𝐴..^𝐵) ∪ (𝐵..^(𝐵 + 1)))) | |
9 | 7, 8 | syl 14 | . 2 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (𝐴..^(𝐵 + 1)) = ((𝐴..^𝐵) ∪ (𝐵..^(𝐵 + 1)))) |
10 | fzosn 9823 | . . . 4 ⊢ (𝐵 ∈ ℤ → (𝐵..^(𝐵 + 1)) = {𝐵}) | |
11 | 2, 10 | syl 14 | . . 3 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (𝐵..^(𝐵 + 1)) = {𝐵}) |
12 | 11 | uneq2d 3177 | . 2 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → ((𝐴..^𝐵) ∪ (𝐵..^(𝐵 + 1))) = ((𝐴..^𝐵) ∪ {𝐵})) |
13 | 9, 12 | eqtrd 2132 | 1 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (𝐴..^(𝐵 + 1)) = ((𝐴..^𝐵) ∪ {𝐵})) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1299 ∈ wcel 1448 ∪ cun 3019 {csn 3474 ‘cfv 5059 (class class class)co 5706 1c1 7501 + caddc 7503 ℤcz 8906 ℤ≥cuz 9176 ...cfz 9631 ..^cfzo 9760 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 584 ax-in2 585 ax-io 671 ax-5 1391 ax-7 1392 ax-gen 1393 ax-ie1 1437 ax-ie2 1438 ax-8 1450 ax-10 1451 ax-11 1452 ax-i12 1453 ax-bndl 1454 ax-4 1455 ax-13 1459 ax-14 1460 ax-17 1474 ax-i9 1478 ax-ial 1482 ax-i5r 1483 ax-ext 2082 ax-sep 3986 ax-pow 4038 ax-pr 4069 ax-un 4293 ax-setind 4390 ax-cnex 7586 ax-resscn 7587 ax-1cn 7588 ax-1re 7589 ax-icn 7590 ax-addcl 7591 ax-addrcl 7592 ax-mulcl 7593 ax-addcom 7595 ax-addass 7597 ax-distr 7599 ax-i2m1 7600 ax-0lt1 7601 ax-0id 7603 ax-rnegex 7604 ax-cnre 7606 ax-pre-ltirr 7607 ax-pre-ltwlin 7608 ax-pre-lttrn 7609 ax-pre-apti 7610 ax-pre-ltadd 7611 |
This theorem depends on definitions: df-bi 116 df-3or 931 df-3an 932 df-tru 1302 df-fal 1305 df-nf 1405 df-sb 1704 df-eu 1963 df-mo 1964 df-clab 2087 df-cleq 2093 df-clel 2096 df-nfc 2229 df-ne 2268 df-nel 2363 df-ral 2380 df-rex 2381 df-reu 2382 df-rab 2384 df-v 2643 df-sbc 2863 df-csb 2956 df-dif 3023 df-un 3025 df-in 3027 df-ss 3034 df-pw 3459 df-sn 3480 df-pr 3481 df-op 3483 df-uni 3684 df-int 3719 df-iun 3762 df-br 3876 df-opab 3930 df-mpt 3931 df-id 4153 df-xp 4483 df-rel 4484 df-cnv 4485 df-co 4486 df-dm 4487 df-rn 4488 df-res 4489 df-ima 4490 df-iota 5024 df-fun 5061 df-fn 5062 df-f 5063 df-fv 5067 df-riota 5662 df-ov 5709 df-oprab 5710 df-mpo 5711 df-1st 5969 df-2nd 5970 df-pnf 7674 df-mnf 7675 df-xr 7676 df-ltxr 7677 df-le 7678 df-sub 7806 df-neg 7807 df-inn 8579 df-n0 8830 df-z 8907 df-uz 9177 df-fz 9632 df-fzo 9761 |
This theorem is referenced by: fzosplitprm1 9852 fzosplitsni 9853 fzisfzounsn 9854 |
Copyright terms: Public domain | W3C validator |