| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > genplt2i | GIF version | ||
| Description: Operating on both sides of two inequalities, when the operation is consistent with <Q. (Contributed by Jim Kingdon, 6-Oct-2019.) |
| Ref | Expression |
|---|---|
| genplt2i.ord | ⊢ ((𝑥 ∈ Q ∧ 𝑦 ∈ Q ∧ 𝑧 ∈ Q) → (𝑥 <Q 𝑦 ↔ (𝑧𝐺𝑥) <Q (𝑧𝐺𝑦))) |
| genplt2i.com | ⊢ ((𝑥 ∈ Q ∧ 𝑦 ∈ Q) → (𝑥𝐺𝑦) = (𝑦𝐺𝑥)) |
| Ref | Expression |
|---|---|
| genplt2i | ⊢ ((𝐴 <Q 𝐵 ∧ 𝐶 <Q 𝐷) → (𝐴𝐺𝐶) <Q (𝐵𝐺𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 109 | . . 3 ⊢ ((𝐴 <Q 𝐵 ∧ 𝐶 <Q 𝐷) → 𝐴 <Q 𝐵) | |
| 2 | genplt2i.ord | . . . . 5 ⊢ ((𝑥 ∈ Q ∧ 𝑦 ∈ Q ∧ 𝑧 ∈ Q) → (𝑥 <Q 𝑦 ↔ (𝑧𝐺𝑥) <Q (𝑧𝐺𝑦))) | |
| 3 | 2 | adantl 277 | . . . 4 ⊢ (((𝐴 <Q 𝐵 ∧ 𝐶 <Q 𝐷) ∧ (𝑥 ∈ Q ∧ 𝑦 ∈ Q ∧ 𝑧 ∈ Q)) → (𝑥 <Q 𝑦 ↔ (𝑧𝐺𝑥) <Q (𝑧𝐺𝑦))) |
| 4 | ltrelnq 7491 | . . . . . 6 ⊢ <Q ⊆ (Q × Q) | |
| 5 | 4 | brel 4732 | . . . . 5 ⊢ (𝐴 <Q 𝐵 → (𝐴 ∈ Q ∧ 𝐵 ∈ Q)) |
| 6 | 4 | brel 4732 | . . . . 5 ⊢ (𝐶 <Q 𝐷 → (𝐶 ∈ Q ∧ 𝐷 ∈ Q)) |
| 7 | simpll 527 | . . . . 5 ⊢ (((𝐴 ∈ Q ∧ 𝐵 ∈ Q) ∧ (𝐶 ∈ Q ∧ 𝐷 ∈ Q)) → 𝐴 ∈ Q) | |
| 8 | 5, 6, 7 | syl2an 289 | . . . 4 ⊢ ((𝐴 <Q 𝐵 ∧ 𝐶 <Q 𝐷) → 𝐴 ∈ Q) |
| 9 | simplr 528 | . . . . 5 ⊢ (((𝐴 ∈ Q ∧ 𝐵 ∈ Q) ∧ (𝐶 ∈ Q ∧ 𝐷 ∈ Q)) → 𝐵 ∈ Q) | |
| 10 | 5, 6, 9 | syl2an 289 | . . . 4 ⊢ ((𝐴 <Q 𝐵 ∧ 𝐶 <Q 𝐷) → 𝐵 ∈ Q) |
| 11 | simprl 529 | . . . . 5 ⊢ (((𝐴 ∈ Q ∧ 𝐵 ∈ Q) ∧ (𝐶 ∈ Q ∧ 𝐷 ∈ Q)) → 𝐶 ∈ Q) | |
| 12 | 5, 6, 11 | syl2an 289 | . . . 4 ⊢ ((𝐴 <Q 𝐵 ∧ 𝐶 <Q 𝐷) → 𝐶 ∈ Q) |
| 13 | genplt2i.com | . . . . 5 ⊢ ((𝑥 ∈ Q ∧ 𝑦 ∈ Q) → (𝑥𝐺𝑦) = (𝑦𝐺𝑥)) | |
| 14 | 13 | adantl 277 | . . . 4 ⊢ (((𝐴 <Q 𝐵 ∧ 𝐶 <Q 𝐷) ∧ (𝑥 ∈ Q ∧ 𝑦 ∈ Q)) → (𝑥𝐺𝑦) = (𝑦𝐺𝑥)) |
| 15 | 3, 8, 10, 12, 14 | caovord2d 6126 | . . 3 ⊢ ((𝐴 <Q 𝐵 ∧ 𝐶 <Q 𝐷) → (𝐴 <Q 𝐵 ↔ (𝐴𝐺𝐶) <Q (𝐵𝐺𝐶))) |
| 16 | 1, 15 | mpbid 147 | . 2 ⊢ ((𝐴 <Q 𝐵 ∧ 𝐶 <Q 𝐷) → (𝐴𝐺𝐶) <Q (𝐵𝐺𝐶)) |
| 17 | simpr 110 | . . 3 ⊢ ((𝐴 <Q 𝐵 ∧ 𝐶 <Q 𝐷) → 𝐶 <Q 𝐷) | |
| 18 | simprr 531 | . . . . 5 ⊢ (((𝐴 ∈ Q ∧ 𝐵 ∈ Q) ∧ (𝐶 ∈ Q ∧ 𝐷 ∈ Q)) → 𝐷 ∈ Q) | |
| 19 | 5, 6, 18 | syl2an 289 | . . . 4 ⊢ ((𝐴 <Q 𝐵 ∧ 𝐶 <Q 𝐷) → 𝐷 ∈ Q) |
| 20 | 3, 12, 19, 10 | caovordd 6125 | . . 3 ⊢ ((𝐴 <Q 𝐵 ∧ 𝐶 <Q 𝐷) → (𝐶 <Q 𝐷 ↔ (𝐵𝐺𝐶) <Q (𝐵𝐺𝐷))) |
| 21 | 17, 20 | mpbid 147 | . 2 ⊢ ((𝐴 <Q 𝐵 ∧ 𝐶 <Q 𝐷) → (𝐵𝐺𝐶) <Q (𝐵𝐺𝐷)) |
| 22 | ltsonq 7524 | . . 3 ⊢ <Q Or Q | |
| 23 | 22, 4 | sotri 5084 | . 2 ⊢ (((𝐴𝐺𝐶) <Q (𝐵𝐺𝐶) ∧ (𝐵𝐺𝐶) <Q (𝐵𝐺𝐷)) → (𝐴𝐺𝐶) <Q (𝐵𝐺𝐷)) |
| 24 | 16, 21, 23 | syl2anc 411 | 1 ⊢ ((𝐴 <Q 𝐵 ∧ 𝐶 <Q 𝐷) → (𝐴𝐺𝐶) <Q (𝐵𝐺𝐷)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 981 = wceq 1373 ∈ wcel 2177 class class class wbr 4048 (class class class)co 5954 Qcnq 7406 <Q cltq 7411 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4164 ax-sep 4167 ax-nul 4175 ax-pow 4223 ax-pr 4258 ax-un 4485 ax-setind 4590 ax-iinf 4641 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3001 df-csb 3096 df-dif 3170 df-un 3172 df-in 3174 df-ss 3181 df-nul 3463 df-pw 3620 df-sn 3641 df-pr 3642 df-op 3644 df-uni 3854 df-int 3889 df-iun 3932 df-br 4049 df-opab 4111 df-mpt 4112 df-tr 4148 df-eprel 4341 df-id 4345 df-po 4348 df-iso 4349 df-iord 4418 df-on 4420 df-suc 4423 df-iom 4644 df-xp 4686 df-rel 4687 df-cnv 4688 df-co 4689 df-dm 4690 df-rn 4691 df-res 4692 df-ima 4693 df-iota 5238 df-fun 5279 df-fn 5280 df-f 5281 df-f1 5282 df-fo 5283 df-f1o 5284 df-fv 5285 df-ov 5957 df-oprab 5958 df-mpo 5959 df-1st 6236 df-2nd 6237 df-recs 6401 df-irdg 6466 df-oadd 6516 df-omul 6517 df-er 6630 df-ec 6632 df-qs 6636 df-ni 7430 df-mi 7432 df-lti 7433 df-enq 7473 df-nqqs 7474 df-ltnqqs 7479 |
| This theorem is referenced by: genprndl 7647 genprndu 7648 genpdisj 7649 |
| Copyright terms: Public domain | W3C validator |