| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > genplt2i | GIF version | ||
| Description: Operating on both sides of two inequalities, when the operation is consistent with <Q. (Contributed by Jim Kingdon, 6-Oct-2019.) |
| Ref | Expression |
|---|---|
| genplt2i.ord | ⊢ ((𝑥 ∈ Q ∧ 𝑦 ∈ Q ∧ 𝑧 ∈ Q) → (𝑥 <Q 𝑦 ↔ (𝑧𝐺𝑥) <Q (𝑧𝐺𝑦))) |
| genplt2i.com | ⊢ ((𝑥 ∈ Q ∧ 𝑦 ∈ Q) → (𝑥𝐺𝑦) = (𝑦𝐺𝑥)) |
| Ref | Expression |
|---|---|
| genplt2i | ⊢ ((𝐴 <Q 𝐵 ∧ 𝐶 <Q 𝐷) → (𝐴𝐺𝐶) <Q (𝐵𝐺𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 109 | . . 3 ⊢ ((𝐴 <Q 𝐵 ∧ 𝐶 <Q 𝐷) → 𝐴 <Q 𝐵) | |
| 2 | genplt2i.ord | . . . . 5 ⊢ ((𝑥 ∈ Q ∧ 𝑦 ∈ Q ∧ 𝑧 ∈ Q) → (𝑥 <Q 𝑦 ↔ (𝑧𝐺𝑥) <Q (𝑧𝐺𝑦))) | |
| 3 | 2 | adantl 277 | . . . 4 ⊢ (((𝐴 <Q 𝐵 ∧ 𝐶 <Q 𝐷) ∧ (𝑥 ∈ Q ∧ 𝑦 ∈ Q ∧ 𝑧 ∈ Q)) → (𝑥 <Q 𝑦 ↔ (𝑧𝐺𝑥) <Q (𝑧𝐺𝑦))) |
| 4 | ltrelnq 7540 | . . . . . 6 ⊢ <Q ⊆ (Q × Q) | |
| 5 | 4 | brel 4768 | . . . . 5 ⊢ (𝐴 <Q 𝐵 → (𝐴 ∈ Q ∧ 𝐵 ∈ Q)) |
| 6 | 4 | brel 4768 | . . . . 5 ⊢ (𝐶 <Q 𝐷 → (𝐶 ∈ Q ∧ 𝐷 ∈ Q)) |
| 7 | simpll 527 | . . . . 5 ⊢ (((𝐴 ∈ Q ∧ 𝐵 ∈ Q) ∧ (𝐶 ∈ Q ∧ 𝐷 ∈ Q)) → 𝐴 ∈ Q) | |
| 8 | 5, 6, 7 | syl2an 289 | . . . 4 ⊢ ((𝐴 <Q 𝐵 ∧ 𝐶 <Q 𝐷) → 𝐴 ∈ Q) |
| 9 | simplr 528 | . . . . 5 ⊢ (((𝐴 ∈ Q ∧ 𝐵 ∈ Q) ∧ (𝐶 ∈ Q ∧ 𝐷 ∈ Q)) → 𝐵 ∈ Q) | |
| 10 | 5, 6, 9 | syl2an 289 | . . . 4 ⊢ ((𝐴 <Q 𝐵 ∧ 𝐶 <Q 𝐷) → 𝐵 ∈ Q) |
| 11 | simprl 529 | . . . . 5 ⊢ (((𝐴 ∈ Q ∧ 𝐵 ∈ Q) ∧ (𝐶 ∈ Q ∧ 𝐷 ∈ Q)) → 𝐶 ∈ Q) | |
| 12 | 5, 6, 11 | syl2an 289 | . . . 4 ⊢ ((𝐴 <Q 𝐵 ∧ 𝐶 <Q 𝐷) → 𝐶 ∈ Q) |
| 13 | genplt2i.com | . . . . 5 ⊢ ((𝑥 ∈ Q ∧ 𝑦 ∈ Q) → (𝑥𝐺𝑦) = (𝑦𝐺𝑥)) | |
| 14 | 13 | adantl 277 | . . . 4 ⊢ (((𝐴 <Q 𝐵 ∧ 𝐶 <Q 𝐷) ∧ (𝑥 ∈ Q ∧ 𝑦 ∈ Q)) → (𝑥𝐺𝑦) = (𝑦𝐺𝑥)) |
| 15 | 3, 8, 10, 12, 14 | caovord2d 6166 | . . 3 ⊢ ((𝐴 <Q 𝐵 ∧ 𝐶 <Q 𝐷) → (𝐴 <Q 𝐵 ↔ (𝐴𝐺𝐶) <Q (𝐵𝐺𝐶))) |
| 16 | 1, 15 | mpbid 147 | . 2 ⊢ ((𝐴 <Q 𝐵 ∧ 𝐶 <Q 𝐷) → (𝐴𝐺𝐶) <Q (𝐵𝐺𝐶)) |
| 17 | simpr 110 | . . 3 ⊢ ((𝐴 <Q 𝐵 ∧ 𝐶 <Q 𝐷) → 𝐶 <Q 𝐷) | |
| 18 | simprr 531 | . . . . 5 ⊢ (((𝐴 ∈ Q ∧ 𝐵 ∈ Q) ∧ (𝐶 ∈ Q ∧ 𝐷 ∈ Q)) → 𝐷 ∈ Q) | |
| 19 | 5, 6, 18 | syl2an 289 | . . . 4 ⊢ ((𝐴 <Q 𝐵 ∧ 𝐶 <Q 𝐷) → 𝐷 ∈ Q) |
| 20 | 3, 12, 19, 10 | caovordd 6165 | . . 3 ⊢ ((𝐴 <Q 𝐵 ∧ 𝐶 <Q 𝐷) → (𝐶 <Q 𝐷 ↔ (𝐵𝐺𝐶) <Q (𝐵𝐺𝐷))) |
| 21 | 17, 20 | mpbid 147 | . 2 ⊢ ((𝐴 <Q 𝐵 ∧ 𝐶 <Q 𝐷) → (𝐵𝐺𝐶) <Q (𝐵𝐺𝐷)) |
| 22 | ltsonq 7573 | . . 3 ⊢ <Q Or Q | |
| 23 | 22, 4 | sotri 5120 | . 2 ⊢ (((𝐴𝐺𝐶) <Q (𝐵𝐺𝐶) ∧ (𝐵𝐺𝐶) <Q (𝐵𝐺𝐷)) → (𝐴𝐺𝐶) <Q (𝐵𝐺𝐷)) |
| 24 | 16, 21, 23 | syl2anc 411 | 1 ⊢ ((𝐴 <Q 𝐵 ∧ 𝐶 <Q 𝐷) → (𝐴𝐺𝐶) <Q (𝐵𝐺𝐷)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 1002 = wceq 1395 ∈ wcel 2200 class class class wbr 4082 (class class class)co 5994 Qcnq 7455 <Q cltq 7460 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4521 ax-setind 4626 ax-iinf 4677 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-eprel 4377 df-id 4381 df-po 4384 df-iso 4385 df-iord 4454 df-on 4456 df-suc 4459 df-iom 4680 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-rn 4727 df-res 4728 df-ima 4729 df-iota 5274 df-fun 5316 df-fn 5317 df-f 5318 df-f1 5319 df-fo 5320 df-f1o 5321 df-fv 5322 df-ov 5997 df-oprab 5998 df-mpo 5999 df-1st 6276 df-2nd 6277 df-recs 6441 df-irdg 6506 df-oadd 6556 df-omul 6557 df-er 6670 df-ec 6672 df-qs 6676 df-ni 7479 df-mi 7481 df-lti 7482 df-enq 7522 df-nqqs 7523 df-ltnqqs 7528 |
| This theorem is referenced by: genprndl 7696 genprndu 7697 genpdisj 7698 |
| Copyright terms: Public domain | W3C validator |