ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  genplt2i GIF version

Theorem genplt2i 7311
Description: Operating on both sides of two inequalities, when the operation is consistent with <Q. (Contributed by Jim Kingdon, 6-Oct-2019.)
Hypotheses
Ref Expression
genplt2i.ord ((𝑥Q𝑦Q𝑧Q) → (𝑥 <Q 𝑦 ↔ (𝑧𝐺𝑥) <Q (𝑧𝐺𝑦)))
genplt2i.com ((𝑥Q𝑦Q) → (𝑥𝐺𝑦) = (𝑦𝐺𝑥))
Assertion
Ref Expression
genplt2i ((𝐴 <Q 𝐵𝐶 <Q 𝐷) → (𝐴𝐺𝐶) <Q (𝐵𝐺𝐷))
Distinct variable groups:   𝑥,𝐴,𝑦,𝑧   𝑥,𝐵,𝑦,𝑧   𝑥,𝐶,𝑦,𝑧   𝑥,𝐷,𝑦,𝑧   𝑥,𝐺,𝑦,𝑧

Proof of Theorem genplt2i
StepHypRef Expression
1 simpl 108 . . 3 ((𝐴 <Q 𝐵𝐶 <Q 𝐷) → 𝐴 <Q 𝐵)
2 genplt2i.ord . . . . 5 ((𝑥Q𝑦Q𝑧Q) → (𝑥 <Q 𝑦 ↔ (𝑧𝐺𝑥) <Q (𝑧𝐺𝑦)))
32adantl 275 . . . 4 (((𝐴 <Q 𝐵𝐶 <Q 𝐷) ∧ (𝑥Q𝑦Q𝑧Q)) → (𝑥 <Q 𝑦 ↔ (𝑧𝐺𝑥) <Q (𝑧𝐺𝑦)))
4 ltrelnq 7166 . . . . . 6 <Q ⊆ (Q × Q)
54brel 4586 . . . . 5 (𝐴 <Q 𝐵 → (𝐴Q𝐵Q))
64brel 4586 . . . . 5 (𝐶 <Q 𝐷 → (𝐶Q𝐷Q))
7 simpll 518 . . . . 5 (((𝐴Q𝐵Q) ∧ (𝐶Q𝐷Q)) → 𝐴Q)
85, 6, 7syl2an 287 . . . 4 ((𝐴 <Q 𝐵𝐶 <Q 𝐷) → 𝐴Q)
9 simplr 519 . . . . 5 (((𝐴Q𝐵Q) ∧ (𝐶Q𝐷Q)) → 𝐵Q)
105, 6, 9syl2an 287 . . . 4 ((𝐴 <Q 𝐵𝐶 <Q 𝐷) → 𝐵Q)
11 simprl 520 . . . . 5 (((𝐴Q𝐵Q) ∧ (𝐶Q𝐷Q)) → 𝐶Q)
125, 6, 11syl2an 287 . . . 4 ((𝐴 <Q 𝐵𝐶 <Q 𝐷) → 𝐶Q)
13 genplt2i.com . . . . 5 ((𝑥Q𝑦Q) → (𝑥𝐺𝑦) = (𝑦𝐺𝑥))
1413adantl 275 . . . 4 (((𝐴 <Q 𝐵𝐶 <Q 𝐷) ∧ (𝑥Q𝑦Q)) → (𝑥𝐺𝑦) = (𝑦𝐺𝑥))
153, 8, 10, 12, 14caovord2d 5933 . . 3 ((𝐴 <Q 𝐵𝐶 <Q 𝐷) → (𝐴 <Q 𝐵 ↔ (𝐴𝐺𝐶) <Q (𝐵𝐺𝐶)))
161, 15mpbid 146 . 2 ((𝐴 <Q 𝐵𝐶 <Q 𝐷) → (𝐴𝐺𝐶) <Q (𝐵𝐺𝐶))
17 simpr 109 . . 3 ((𝐴 <Q 𝐵𝐶 <Q 𝐷) → 𝐶 <Q 𝐷)
18 simprr 521 . . . . 5 (((𝐴Q𝐵Q) ∧ (𝐶Q𝐷Q)) → 𝐷Q)
195, 6, 18syl2an 287 . . . 4 ((𝐴 <Q 𝐵𝐶 <Q 𝐷) → 𝐷Q)
203, 12, 19, 10caovordd 5932 . . 3 ((𝐴 <Q 𝐵𝐶 <Q 𝐷) → (𝐶 <Q 𝐷 ↔ (𝐵𝐺𝐶) <Q (𝐵𝐺𝐷)))
2117, 20mpbid 146 . 2 ((𝐴 <Q 𝐵𝐶 <Q 𝐷) → (𝐵𝐺𝐶) <Q (𝐵𝐺𝐷))
22 ltsonq 7199 . . 3 <Q Or Q
2322, 4sotri 4929 . 2 (((𝐴𝐺𝐶) <Q (𝐵𝐺𝐶) ∧ (𝐵𝐺𝐶) <Q (𝐵𝐺𝐷)) → (𝐴𝐺𝐶) <Q (𝐵𝐺𝐷))
2416, 21, 23syl2anc 408 1 ((𝐴 <Q 𝐵𝐶 <Q 𝐷) → (𝐴𝐺𝐶) <Q (𝐵𝐺𝐷))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 962   = wceq 1331  wcel 1480   class class class wbr 3924  (class class class)co 5767  Qcnq 7081   <Q cltq 7086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-coll 4038  ax-sep 4041  ax-nul 4049  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-iinf 4497
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-ral 2419  df-rex 2420  df-reu 2421  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-nul 3359  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-int 3767  df-iun 3810  df-br 3925  df-opab 3985  df-mpt 3986  df-tr 4022  df-eprel 4206  df-id 4210  df-po 4213  df-iso 4214  df-iord 4283  df-on 4285  df-suc 4288  df-iom 4500  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-f1 5123  df-fo 5124  df-f1o 5125  df-fv 5126  df-ov 5770  df-oprab 5771  df-mpo 5772  df-1st 6031  df-2nd 6032  df-recs 6195  df-irdg 6260  df-oadd 6310  df-omul 6311  df-er 6422  df-ec 6424  df-qs 6428  df-ni 7105  df-mi 7107  df-lti 7108  df-enq 7148  df-nqqs 7149  df-ltnqqs 7154
This theorem is referenced by:  genprndl  7322  genprndu  7323  genpdisj  7324
  Copyright terms: Public domain W3C validator