Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > genplt2i | GIF version |
Description: Operating on both sides of two inequalities, when the operation is consistent with <Q. (Contributed by Jim Kingdon, 6-Oct-2019.) |
Ref | Expression |
---|---|
genplt2i.ord | ⊢ ((𝑥 ∈ Q ∧ 𝑦 ∈ Q ∧ 𝑧 ∈ Q) → (𝑥 <Q 𝑦 ↔ (𝑧𝐺𝑥) <Q (𝑧𝐺𝑦))) |
genplt2i.com | ⊢ ((𝑥 ∈ Q ∧ 𝑦 ∈ Q) → (𝑥𝐺𝑦) = (𝑦𝐺𝑥)) |
Ref | Expression |
---|---|
genplt2i | ⊢ ((𝐴 <Q 𝐵 ∧ 𝐶 <Q 𝐷) → (𝐴𝐺𝐶) <Q (𝐵𝐺𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 108 | . . 3 ⊢ ((𝐴 <Q 𝐵 ∧ 𝐶 <Q 𝐷) → 𝐴 <Q 𝐵) | |
2 | genplt2i.ord | . . . . 5 ⊢ ((𝑥 ∈ Q ∧ 𝑦 ∈ Q ∧ 𝑧 ∈ Q) → (𝑥 <Q 𝑦 ↔ (𝑧𝐺𝑥) <Q (𝑧𝐺𝑦))) | |
3 | 2 | adantl 275 | . . . 4 ⊢ (((𝐴 <Q 𝐵 ∧ 𝐶 <Q 𝐷) ∧ (𝑥 ∈ Q ∧ 𝑦 ∈ Q ∧ 𝑧 ∈ Q)) → (𝑥 <Q 𝑦 ↔ (𝑧𝐺𝑥) <Q (𝑧𝐺𝑦))) |
4 | ltrelnq 7327 | . . . . . 6 ⊢ <Q ⊆ (Q × Q) | |
5 | 4 | brel 4663 | . . . . 5 ⊢ (𝐴 <Q 𝐵 → (𝐴 ∈ Q ∧ 𝐵 ∈ Q)) |
6 | 4 | brel 4663 | . . . . 5 ⊢ (𝐶 <Q 𝐷 → (𝐶 ∈ Q ∧ 𝐷 ∈ Q)) |
7 | simpll 524 | . . . . 5 ⊢ (((𝐴 ∈ Q ∧ 𝐵 ∈ Q) ∧ (𝐶 ∈ Q ∧ 𝐷 ∈ Q)) → 𝐴 ∈ Q) | |
8 | 5, 6, 7 | syl2an 287 | . . . 4 ⊢ ((𝐴 <Q 𝐵 ∧ 𝐶 <Q 𝐷) → 𝐴 ∈ Q) |
9 | simplr 525 | . . . . 5 ⊢ (((𝐴 ∈ Q ∧ 𝐵 ∈ Q) ∧ (𝐶 ∈ Q ∧ 𝐷 ∈ Q)) → 𝐵 ∈ Q) | |
10 | 5, 6, 9 | syl2an 287 | . . . 4 ⊢ ((𝐴 <Q 𝐵 ∧ 𝐶 <Q 𝐷) → 𝐵 ∈ Q) |
11 | simprl 526 | . . . . 5 ⊢ (((𝐴 ∈ Q ∧ 𝐵 ∈ Q) ∧ (𝐶 ∈ Q ∧ 𝐷 ∈ Q)) → 𝐶 ∈ Q) | |
12 | 5, 6, 11 | syl2an 287 | . . . 4 ⊢ ((𝐴 <Q 𝐵 ∧ 𝐶 <Q 𝐷) → 𝐶 ∈ Q) |
13 | genplt2i.com | . . . . 5 ⊢ ((𝑥 ∈ Q ∧ 𝑦 ∈ Q) → (𝑥𝐺𝑦) = (𝑦𝐺𝑥)) | |
14 | 13 | adantl 275 | . . . 4 ⊢ (((𝐴 <Q 𝐵 ∧ 𝐶 <Q 𝐷) ∧ (𝑥 ∈ Q ∧ 𝑦 ∈ Q)) → (𝑥𝐺𝑦) = (𝑦𝐺𝑥)) |
15 | 3, 8, 10, 12, 14 | caovord2d 6022 | . . 3 ⊢ ((𝐴 <Q 𝐵 ∧ 𝐶 <Q 𝐷) → (𝐴 <Q 𝐵 ↔ (𝐴𝐺𝐶) <Q (𝐵𝐺𝐶))) |
16 | 1, 15 | mpbid 146 | . 2 ⊢ ((𝐴 <Q 𝐵 ∧ 𝐶 <Q 𝐷) → (𝐴𝐺𝐶) <Q (𝐵𝐺𝐶)) |
17 | simpr 109 | . . 3 ⊢ ((𝐴 <Q 𝐵 ∧ 𝐶 <Q 𝐷) → 𝐶 <Q 𝐷) | |
18 | simprr 527 | . . . . 5 ⊢ (((𝐴 ∈ Q ∧ 𝐵 ∈ Q) ∧ (𝐶 ∈ Q ∧ 𝐷 ∈ Q)) → 𝐷 ∈ Q) | |
19 | 5, 6, 18 | syl2an 287 | . . . 4 ⊢ ((𝐴 <Q 𝐵 ∧ 𝐶 <Q 𝐷) → 𝐷 ∈ Q) |
20 | 3, 12, 19, 10 | caovordd 6021 | . . 3 ⊢ ((𝐴 <Q 𝐵 ∧ 𝐶 <Q 𝐷) → (𝐶 <Q 𝐷 ↔ (𝐵𝐺𝐶) <Q (𝐵𝐺𝐷))) |
21 | 17, 20 | mpbid 146 | . 2 ⊢ ((𝐴 <Q 𝐵 ∧ 𝐶 <Q 𝐷) → (𝐵𝐺𝐶) <Q (𝐵𝐺𝐷)) |
22 | ltsonq 7360 | . . 3 ⊢ <Q Or Q | |
23 | 22, 4 | sotri 5006 | . 2 ⊢ (((𝐴𝐺𝐶) <Q (𝐵𝐺𝐶) ∧ (𝐵𝐺𝐶) <Q (𝐵𝐺𝐷)) → (𝐴𝐺𝐶) <Q (𝐵𝐺𝐷)) |
24 | 16, 21, 23 | syl2anc 409 | 1 ⊢ ((𝐴 <Q 𝐵 ∧ 𝐶 <Q 𝐷) → (𝐴𝐺𝐶) <Q (𝐵𝐺𝐷)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∧ w3a 973 = wceq 1348 ∈ wcel 2141 class class class wbr 3989 (class class class)co 5853 Qcnq 7242 <Q cltq 7247 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-iinf 4572 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-tr 4088 df-eprel 4274 df-id 4278 df-po 4281 df-iso 4282 df-iord 4351 df-on 4353 df-suc 4356 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 df-recs 6284 df-irdg 6349 df-oadd 6399 df-omul 6400 df-er 6513 df-ec 6515 df-qs 6519 df-ni 7266 df-mi 7268 df-lti 7269 df-enq 7309 df-nqqs 7310 df-ltnqqs 7315 |
This theorem is referenced by: genprndl 7483 genprndu 7484 genpdisj 7485 |
Copyright terms: Public domain | W3C validator |