| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > genplt2i | GIF version | ||
| Description: Operating on both sides of two inequalities, when the operation is consistent with <Q. (Contributed by Jim Kingdon, 6-Oct-2019.) | 
| Ref | Expression | 
|---|---|
| genplt2i.ord | ⊢ ((𝑥 ∈ Q ∧ 𝑦 ∈ Q ∧ 𝑧 ∈ Q) → (𝑥 <Q 𝑦 ↔ (𝑧𝐺𝑥) <Q (𝑧𝐺𝑦))) | 
| genplt2i.com | ⊢ ((𝑥 ∈ Q ∧ 𝑦 ∈ Q) → (𝑥𝐺𝑦) = (𝑦𝐺𝑥)) | 
| Ref | Expression | 
|---|---|
| genplt2i | ⊢ ((𝐴 <Q 𝐵 ∧ 𝐶 <Q 𝐷) → (𝐴𝐺𝐶) <Q (𝐵𝐺𝐷)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | simpl 109 | . . 3 ⊢ ((𝐴 <Q 𝐵 ∧ 𝐶 <Q 𝐷) → 𝐴 <Q 𝐵) | |
| 2 | genplt2i.ord | . . . . 5 ⊢ ((𝑥 ∈ Q ∧ 𝑦 ∈ Q ∧ 𝑧 ∈ Q) → (𝑥 <Q 𝑦 ↔ (𝑧𝐺𝑥) <Q (𝑧𝐺𝑦))) | |
| 3 | 2 | adantl 277 | . . . 4 ⊢ (((𝐴 <Q 𝐵 ∧ 𝐶 <Q 𝐷) ∧ (𝑥 ∈ Q ∧ 𝑦 ∈ Q ∧ 𝑧 ∈ Q)) → (𝑥 <Q 𝑦 ↔ (𝑧𝐺𝑥) <Q (𝑧𝐺𝑦))) | 
| 4 | ltrelnq 7432 | . . . . . 6 ⊢ <Q ⊆ (Q × Q) | |
| 5 | 4 | brel 4715 | . . . . 5 ⊢ (𝐴 <Q 𝐵 → (𝐴 ∈ Q ∧ 𝐵 ∈ Q)) | 
| 6 | 4 | brel 4715 | . . . . 5 ⊢ (𝐶 <Q 𝐷 → (𝐶 ∈ Q ∧ 𝐷 ∈ Q)) | 
| 7 | simpll 527 | . . . . 5 ⊢ (((𝐴 ∈ Q ∧ 𝐵 ∈ Q) ∧ (𝐶 ∈ Q ∧ 𝐷 ∈ Q)) → 𝐴 ∈ Q) | |
| 8 | 5, 6, 7 | syl2an 289 | . . . 4 ⊢ ((𝐴 <Q 𝐵 ∧ 𝐶 <Q 𝐷) → 𝐴 ∈ Q) | 
| 9 | simplr 528 | . . . . 5 ⊢ (((𝐴 ∈ Q ∧ 𝐵 ∈ Q) ∧ (𝐶 ∈ Q ∧ 𝐷 ∈ Q)) → 𝐵 ∈ Q) | |
| 10 | 5, 6, 9 | syl2an 289 | . . . 4 ⊢ ((𝐴 <Q 𝐵 ∧ 𝐶 <Q 𝐷) → 𝐵 ∈ Q) | 
| 11 | simprl 529 | . . . . 5 ⊢ (((𝐴 ∈ Q ∧ 𝐵 ∈ Q) ∧ (𝐶 ∈ Q ∧ 𝐷 ∈ Q)) → 𝐶 ∈ Q) | |
| 12 | 5, 6, 11 | syl2an 289 | . . . 4 ⊢ ((𝐴 <Q 𝐵 ∧ 𝐶 <Q 𝐷) → 𝐶 ∈ Q) | 
| 13 | genplt2i.com | . . . . 5 ⊢ ((𝑥 ∈ Q ∧ 𝑦 ∈ Q) → (𝑥𝐺𝑦) = (𝑦𝐺𝑥)) | |
| 14 | 13 | adantl 277 | . . . 4 ⊢ (((𝐴 <Q 𝐵 ∧ 𝐶 <Q 𝐷) ∧ (𝑥 ∈ Q ∧ 𝑦 ∈ Q)) → (𝑥𝐺𝑦) = (𝑦𝐺𝑥)) | 
| 15 | 3, 8, 10, 12, 14 | caovord2d 6093 | . . 3 ⊢ ((𝐴 <Q 𝐵 ∧ 𝐶 <Q 𝐷) → (𝐴 <Q 𝐵 ↔ (𝐴𝐺𝐶) <Q (𝐵𝐺𝐶))) | 
| 16 | 1, 15 | mpbid 147 | . 2 ⊢ ((𝐴 <Q 𝐵 ∧ 𝐶 <Q 𝐷) → (𝐴𝐺𝐶) <Q (𝐵𝐺𝐶)) | 
| 17 | simpr 110 | . . 3 ⊢ ((𝐴 <Q 𝐵 ∧ 𝐶 <Q 𝐷) → 𝐶 <Q 𝐷) | |
| 18 | simprr 531 | . . . . 5 ⊢ (((𝐴 ∈ Q ∧ 𝐵 ∈ Q) ∧ (𝐶 ∈ Q ∧ 𝐷 ∈ Q)) → 𝐷 ∈ Q) | |
| 19 | 5, 6, 18 | syl2an 289 | . . . 4 ⊢ ((𝐴 <Q 𝐵 ∧ 𝐶 <Q 𝐷) → 𝐷 ∈ Q) | 
| 20 | 3, 12, 19, 10 | caovordd 6092 | . . 3 ⊢ ((𝐴 <Q 𝐵 ∧ 𝐶 <Q 𝐷) → (𝐶 <Q 𝐷 ↔ (𝐵𝐺𝐶) <Q (𝐵𝐺𝐷))) | 
| 21 | 17, 20 | mpbid 147 | . 2 ⊢ ((𝐴 <Q 𝐵 ∧ 𝐶 <Q 𝐷) → (𝐵𝐺𝐶) <Q (𝐵𝐺𝐷)) | 
| 22 | ltsonq 7465 | . . 3 ⊢ <Q Or Q | |
| 23 | 22, 4 | sotri 5065 | . 2 ⊢ (((𝐴𝐺𝐶) <Q (𝐵𝐺𝐶) ∧ (𝐵𝐺𝐶) <Q (𝐵𝐺𝐷)) → (𝐴𝐺𝐶) <Q (𝐵𝐺𝐷)) | 
| 24 | 16, 21, 23 | syl2anc 411 | 1 ⊢ ((𝐴 <Q 𝐵 ∧ 𝐶 <Q 𝐷) → (𝐴𝐺𝐶) <Q (𝐵𝐺𝐷)) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 980 = wceq 1364 ∈ wcel 2167 class class class wbr 4033 (class class class)co 5922 Qcnq 7347 <Q cltq 7352 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 | 
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-eprel 4324 df-id 4328 df-po 4331 df-iso 4332 df-iord 4401 df-on 4403 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-recs 6363 df-irdg 6428 df-oadd 6478 df-omul 6479 df-er 6592 df-ec 6594 df-qs 6598 df-ni 7371 df-mi 7373 df-lti 7374 df-enq 7414 df-nqqs 7415 df-ltnqqs 7420 | 
| This theorem is referenced by: genprndl 7588 genprndu 7589 genpdisj 7590 | 
| Copyright terms: Public domain | W3C validator |