ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  genplt2i GIF version

Theorem genplt2i 7572
Description: Operating on both sides of two inequalities, when the operation is consistent with <Q. (Contributed by Jim Kingdon, 6-Oct-2019.)
Hypotheses
Ref Expression
genplt2i.ord ((𝑥Q𝑦Q𝑧Q) → (𝑥 <Q 𝑦 ↔ (𝑧𝐺𝑥) <Q (𝑧𝐺𝑦)))
genplt2i.com ((𝑥Q𝑦Q) → (𝑥𝐺𝑦) = (𝑦𝐺𝑥))
Assertion
Ref Expression
genplt2i ((𝐴 <Q 𝐵𝐶 <Q 𝐷) → (𝐴𝐺𝐶) <Q (𝐵𝐺𝐷))
Distinct variable groups:   𝑥,𝐴,𝑦,𝑧   𝑥,𝐵,𝑦,𝑧   𝑥,𝐶,𝑦,𝑧   𝑥,𝐷,𝑦,𝑧   𝑥,𝐺,𝑦,𝑧

Proof of Theorem genplt2i
StepHypRef Expression
1 simpl 109 . . 3 ((𝐴 <Q 𝐵𝐶 <Q 𝐷) → 𝐴 <Q 𝐵)
2 genplt2i.ord . . . . 5 ((𝑥Q𝑦Q𝑧Q) → (𝑥 <Q 𝑦 ↔ (𝑧𝐺𝑥) <Q (𝑧𝐺𝑦)))
32adantl 277 . . . 4 (((𝐴 <Q 𝐵𝐶 <Q 𝐷) ∧ (𝑥Q𝑦Q𝑧Q)) → (𝑥 <Q 𝑦 ↔ (𝑧𝐺𝑥) <Q (𝑧𝐺𝑦)))
4 ltrelnq 7427 . . . . . 6 <Q ⊆ (Q × Q)
54brel 4712 . . . . 5 (𝐴 <Q 𝐵 → (𝐴Q𝐵Q))
64brel 4712 . . . . 5 (𝐶 <Q 𝐷 → (𝐶Q𝐷Q))
7 simpll 527 . . . . 5 (((𝐴Q𝐵Q) ∧ (𝐶Q𝐷Q)) → 𝐴Q)
85, 6, 7syl2an 289 . . . 4 ((𝐴 <Q 𝐵𝐶 <Q 𝐷) → 𝐴Q)
9 simplr 528 . . . . 5 (((𝐴Q𝐵Q) ∧ (𝐶Q𝐷Q)) → 𝐵Q)
105, 6, 9syl2an 289 . . . 4 ((𝐴 <Q 𝐵𝐶 <Q 𝐷) → 𝐵Q)
11 simprl 529 . . . . 5 (((𝐴Q𝐵Q) ∧ (𝐶Q𝐷Q)) → 𝐶Q)
125, 6, 11syl2an 289 . . . 4 ((𝐴 <Q 𝐵𝐶 <Q 𝐷) → 𝐶Q)
13 genplt2i.com . . . . 5 ((𝑥Q𝑦Q) → (𝑥𝐺𝑦) = (𝑦𝐺𝑥))
1413adantl 277 . . . 4 (((𝐴 <Q 𝐵𝐶 <Q 𝐷) ∧ (𝑥Q𝑦Q)) → (𝑥𝐺𝑦) = (𝑦𝐺𝑥))
153, 8, 10, 12, 14caovord2d 6090 . . 3 ((𝐴 <Q 𝐵𝐶 <Q 𝐷) → (𝐴 <Q 𝐵 ↔ (𝐴𝐺𝐶) <Q (𝐵𝐺𝐶)))
161, 15mpbid 147 . 2 ((𝐴 <Q 𝐵𝐶 <Q 𝐷) → (𝐴𝐺𝐶) <Q (𝐵𝐺𝐶))
17 simpr 110 . . 3 ((𝐴 <Q 𝐵𝐶 <Q 𝐷) → 𝐶 <Q 𝐷)
18 simprr 531 . . . . 5 (((𝐴Q𝐵Q) ∧ (𝐶Q𝐷Q)) → 𝐷Q)
195, 6, 18syl2an 289 . . . 4 ((𝐴 <Q 𝐵𝐶 <Q 𝐷) → 𝐷Q)
203, 12, 19, 10caovordd 6089 . . 3 ((𝐴 <Q 𝐵𝐶 <Q 𝐷) → (𝐶 <Q 𝐷 ↔ (𝐵𝐺𝐶) <Q (𝐵𝐺𝐷)))
2117, 20mpbid 147 . 2 ((𝐴 <Q 𝐵𝐶 <Q 𝐷) → (𝐵𝐺𝐶) <Q (𝐵𝐺𝐷))
22 ltsonq 7460 . . 3 <Q Or Q
2322, 4sotri 5062 . 2 (((𝐴𝐺𝐶) <Q (𝐵𝐺𝐶) ∧ (𝐵𝐺𝐶) <Q (𝐵𝐺𝐷)) → (𝐴𝐺𝐶) <Q (𝐵𝐺𝐷))
2416, 21, 23syl2anc 411 1 ((𝐴 <Q 𝐵𝐶 <Q 𝐷) → (𝐴𝐺𝐶) <Q (𝐵𝐺𝐷))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980   = wceq 1364  wcel 2164   class class class wbr 4030  (class class class)co 5919  Qcnq 7342   <Q cltq 7347
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-eprel 4321  df-id 4325  df-po 4328  df-iso 4329  df-iord 4398  df-on 4400  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-irdg 6425  df-oadd 6475  df-omul 6476  df-er 6589  df-ec 6591  df-qs 6595  df-ni 7366  df-mi 7368  df-lti 7369  df-enq 7409  df-nqqs 7410  df-ltnqqs 7415
This theorem is referenced by:  genprndl  7583  genprndu  7584  genpdisj  7585
  Copyright terms: Public domain W3C validator