![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > genplt2i | GIF version |
Description: Operating on both sides of two inequalities, when the operation is consistent with <Q. (Contributed by Jim Kingdon, 6-Oct-2019.) |
Ref | Expression |
---|---|
genplt2i.ord | ⊢ ((𝑥 ∈ Q ∧ 𝑦 ∈ Q ∧ 𝑧 ∈ Q) → (𝑥 <Q 𝑦 ↔ (𝑧𝐺𝑥) <Q (𝑧𝐺𝑦))) |
genplt2i.com | ⊢ ((𝑥 ∈ Q ∧ 𝑦 ∈ Q) → (𝑥𝐺𝑦) = (𝑦𝐺𝑥)) |
Ref | Expression |
---|---|
genplt2i | ⊢ ((𝐴 <Q 𝐵 ∧ 𝐶 <Q 𝐷) → (𝐴𝐺𝐶) <Q (𝐵𝐺𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 109 | . . 3 ⊢ ((𝐴 <Q 𝐵 ∧ 𝐶 <Q 𝐷) → 𝐴 <Q 𝐵) | |
2 | genplt2i.ord | . . . . 5 ⊢ ((𝑥 ∈ Q ∧ 𝑦 ∈ Q ∧ 𝑧 ∈ Q) → (𝑥 <Q 𝑦 ↔ (𝑧𝐺𝑥) <Q (𝑧𝐺𝑦))) | |
3 | 2 | adantl 277 | . . . 4 ⊢ (((𝐴 <Q 𝐵 ∧ 𝐶 <Q 𝐷) ∧ (𝑥 ∈ Q ∧ 𝑦 ∈ Q ∧ 𝑧 ∈ Q)) → (𝑥 <Q 𝑦 ↔ (𝑧𝐺𝑥) <Q (𝑧𝐺𝑦))) |
4 | ltrelnq 7425 | . . . . . 6 ⊢ <Q ⊆ (Q × Q) | |
5 | 4 | brel 4711 | . . . . 5 ⊢ (𝐴 <Q 𝐵 → (𝐴 ∈ Q ∧ 𝐵 ∈ Q)) |
6 | 4 | brel 4711 | . . . . 5 ⊢ (𝐶 <Q 𝐷 → (𝐶 ∈ Q ∧ 𝐷 ∈ Q)) |
7 | simpll 527 | . . . . 5 ⊢ (((𝐴 ∈ Q ∧ 𝐵 ∈ Q) ∧ (𝐶 ∈ Q ∧ 𝐷 ∈ Q)) → 𝐴 ∈ Q) | |
8 | 5, 6, 7 | syl2an 289 | . . . 4 ⊢ ((𝐴 <Q 𝐵 ∧ 𝐶 <Q 𝐷) → 𝐴 ∈ Q) |
9 | simplr 528 | . . . . 5 ⊢ (((𝐴 ∈ Q ∧ 𝐵 ∈ Q) ∧ (𝐶 ∈ Q ∧ 𝐷 ∈ Q)) → 𝐵 ∈ Q) | |
10 | 5, 6, 9 | syl2an 289 | . . . 4 ⊢ ((𝐴 <Q 𝐵 ∧ 𝐶 <Q 𝐷) → 𝐵 ∈ Q) |
11 | simprl 529 | . . . . 5 ⊢ (((𝐴 ∈ Q ∧ 𝐵 ∈ Q) ∧ (𝐶 ∈ Q ∧ 𝐷 ∈ Q)) → 𝐶 ∈ Q) | |
12 | 5, 6, 11 | syl2an 289 | . . . 4 ⊢ ((𝐴 <Q 𝐵 ∧ 𝐶 <Q 𝐷) → 𝐶 ∈ Q) |
13 | genplt2i.com | . . . . 5 ⊢ ((𝑥 ∈ Q ∧ 𝑦 ∈ Q) → (𝑥𝐺𝑦) = (𝑦𝐺𝑥)) | |
14 | 13 | adantl 277 | . . . 4 ⊢ (((𝐴 <Q 𝐵 ∧ 𝐶 <Q 𝐷) ∧ (𝑥 ∈ Q ∧ 𝑦 ∈ Q)) → (𝑥𝐺𝑦) = (𝑦𝐺𝑥)) |
15 | 3, 8, 10, 12, 14 | caovord2d 6088 | . . 3 ⊢ ((𝐴 <Q 𝐵 ∧ 𝐶 <Q 𝐷) → (𝐴 <Q 𝐵 ↔ (𝐴𝐺𝐶) <Q (𝐵𝐺𝐶))) |
16 | 1, 15 | mpbid 147 | . 2 ⊢ ((𝐴 <Q 𝐵 ∧ 𝐶 <Q 𝐷) → (𝐴𝐺𝐶) <Q (𝐵𝐺𝐶)) |
17 | simpr 110 | . . 3 ⊢ ((𝐴 <Q 𝐵 ∧ 𝐶 <Q 𝐷) → 𝐶 <Q 𝐷) | |
18 | simprr 531 | . . . . 5 ⊢ (((𝐴 ∈ Q ∧ 𝐵 ∈ Q) ∧ (𝐶 ∈ Q ∧ 𝐷 ∈ Q)) → 𝐷 ∈ Q) | |
19 | 5, 6, 18 | syl2an 289 | . . . 4 ⊢ ((𝐴 <Q 𝐵 ∧ 𝐶 <Q 𝐷) → 𝐷 ∈ Q) |
20 | 3, 12, 19, 10 | caovordd 6087 | . . 3 ⊢ ((𝐴 <Q 𝐵 ∧ 𝐶 <Q 𝐷) → (𝐶 <Q 𝐷 ↔ (𝐵𝐺𝐶) <Q (𝐵𝐺𝐷))) |
21 | 17, 20 | mpbid 147 | . 2 ⊢ ((𝐴 <Q 𝐵 ∧ 𝐶 <Q 𝐷) → (𝐵𝐺𝐶) <Q (𝐵𝐺𝐷)) |
22 | ltsonq 7458 | . . 3 ⊢ <Q Or Q | |
23 | 22, 4 | sotri 5061 | . 2 ⊢ (((𝐴𝐺𝐶) <Q (𝐵𝐺𝐶) ∧ (𝐵𝐺𝐶) <Q (𝐵𝐺𝐷)) → (𝐴𝐺𝐶) <Q (𝐵𝐺𝐷)) |
24 | 16, 21, 23 | syl2anc 411 | 1 ⊢ ((𝐴 <Q 𝐵 ∧ 𝐶 <Q 𝐷) → (𝐴𝐺𝐶) <Q (𝐵𝐺𝐷)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 980 = wceq 1364 ∈ wcel 2164 class class class wbr 4029 (class class class)co 5918 Qcnq 7340 <Q cltq 7345 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4144 ax-sep 4147 ax-nul 4155 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-iinf 4620 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-iun 3914 df-br 4030 df-opab 4091 df-mpt 4092 df-tr 4128 df-eprel 4320 df-id 4324 df-po 4327 df-iso 4328 df-iord 4397 df-on 4399 df-suc 4402 df-iom 4623 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-f1 5259 df-fo 5260 df-f1o 5261 df-fv 5262 df-ov 5921 df-oprab 5922 df-mpo 5923 df-1st 6193 df-2nd 6194 df-recs 6358 df-irdg 6423 df-oadd 6473 df-omul 6474 df-er 6587 df-ec 6589 df-qs 6593 df-ni 7364 df-mi 7366 df-lti 7367 df-enq 7407 df-nqqs 7408 df-ltnqqs 7413 |
This theorem is referenced by: genprndl 7581 genprndu 7582 genpdisj 7583 |
Copyright terms: Public domain | W3C validator |