ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iscnp GIF version

Theorem iscnp 13784
Description: The predicate "the class 𝐹 is a continuous function from topology 𝐽 to topology 𝐾 at point 𝑃". Based on Theorem 7.2(g) of [Munkres] p. 107. (Contributed by NM, 17-Oct-2006.) (Revised by Mario Carneiro, 21-Aug-2015.)
Assertion
Ref Expression
iscnp ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) β†’ (𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘ƒ) ↔ (𝐹:π‘‹βŸΆπ‘Œ ∧ βˆ€π‘¦ ∈ 𝐾 ((πΉβ€˜π‘ƒ) ∈ 𝑦 β†’ βˆƒπ‘₯ ∈ 𝐽 (𝑃 ∈ π‘₯ ∧ (𝐹 β€œ π‘₯) βŠ† 𝑦)))))
Distinct variable groups:   π‘₯,𝑦,𝐽   π‘₯,𝐾,𝑦   π‘₯,𝑋,𝑦   π‘₯,𝐹,𝑦   π‘₯,𝑃,𝑦   π‘₯,π‘Œ,𝑦

Proof of Theorem iscnp
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 cnpval 13783 . . 3 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) β†’ ((𝐽 CnP 𝐾)β€˜π‘ƒ) = {𝑓 ∈ (π‘Œ β†‘π‘š 𝑋) ∣ βˆ€π‘¦ ∈ 𝐾 ((π‘“β€˜π‘ƒ) ∈ 𝑦 β†’ βˆƒπ‘₯ ∈ 𝐽 (𝑃 ∈ π‘₯ ∧ (𝑓 β€œ π‘₯) βŠ† 𝑦))})
21eleq2d 2247 . 2 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) β†’ (𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘ƒ) ↔ 𝐹 ∈ {𝑓 ∈ (π‘Œ β†‘π‘š 𝑋) ∣ βˆ€π‘¦ ∈ 𝐾 ((π‘“β€˜π‘ƒ) ∈ 𝑦 β†’ βˆƒπ‘₯ ∈ 𝐽 (𝑃 ∈ π‘₯ ∧ (𝑓 β€œ π‘₯) βŠ† 𝑦))}))
3 fveq1 5516 . . . . . . . 8 (𝑓 = 𝐹 β†’ (π‘“β€˜π‘ƒ) = (πΉβ€˜π‘ƒ))
43eleq1d 2246 . . . . . . 7 (𝑓 = 𝐹 β†’ ((π‘“β€˜π‘ƒ) ∈ 𝑦 ↔ (πΉβ€˜π‘ƒ) ∈ 𝑦))
5 imaeq1 4967 . . . . . . . . . 10 (𝑓 = 𝐹 β†’ (𝑓 β€œ π‘₯) = (𝐹 β€œ π‘₯))
65sseq1d 3186 . . . . . . . . 9 (𝑓 = 𝐹 β†’ ((𝑓 β€œ π‘₯) βŠ† 𝑦 ↔ (𝐹 β€œ π‘₯) βŠ† 𝑦))
76anbi2d 464 . . . . . . . 8 (𝑓 = 𝐹 β†’ ((𝑃 ∈ π‘₯ ∧ (𝑓 β€œ π‘₯) βŠ† 𝑦) ↔ (𝑃 ∈ π‘₯ ∧ (𝐹 β€œ π‘₯) βŠ† 𝑦)))
87rexbidv 2478 . . . . . . 7 (𝑓 = 𝐹 β†’ (βˆƒπ‘₯ ∈ 𝐽 (𝑃 ∈ π‘₯ ∧ (𝑓 β€œ π‘₯) βŠ† 𝑦) ↔ βˆƒπ‘₯ ∈ 𝐽 (𝑃 ∈ π‘₯ ∧ (𝐹 β€œ π‘₯) βŠ† 𝑦)))
94, 8imbi12d 234 . . . . . 6 (𝑓 = 𝐹 β†’ (((π‘“β€˜π‘ƒ) ∈ 𝑦 β†’ βˆƒπ‘₯ ∈ 𝐽 (𝑃 ∈ π‘₯ ∧ (𝑓 β€œ π‘₯) βŠ† 𝑦)) ↔ ((πΉβ€˜π‘ƒ) ∈ 𝑦 β†’ βˆƒπ‘₯ ∈ 𝐽 (𝑃 ∈ π‘₯ ∧ (𝐹 β€œ π‘₯) βŠ† 𝑦))))
109ralbidv 2477 . . . . 5 (𝑓 = 𝐹 β†’ (βˆ€π‘¦ ∈ 𝐾 ((π‘“β€˜π‘ƒ) ∈ 𝑦 β†’ βˆƒπ‘₯ ∈ 𝐽 (𝑃 ∈ π‘₯ ∧ (𝑓 β€œ π‘₯) βŠ† 𝑦)) ↔ βˆ€π‘¦ ∈ 𝐾 ((πΉβ€˜π‘ƒ) ∈ 𝑦 β†’ βˆƒπ‘₯ ∈ 𝐽 (𝑃 ∈ π‘₯ ∧ (𝐹 β€œ π‘₯) βŠ† 𝑦))))
1110elrab 2895 . . . 4 (𝐹 ∈ {𝑓 ∈ (π‘Œ β†‘π‘š 𝑋) ∣ βˆ€π‘¦ ∈ 𝐾 ((π‘“β€˜π‘ƒ) ∈ 𝑦 β†’ βˆƒπ‘₯ ∈ 𝐽 (𝑃 ∈ π‘₯ ∧ (𝑓 β€œ π‘₯) βŠ† 𝑦))} ↔ (𝐹 ∈ (π‘Œ β†‘π‘š 𝑋) ∧ βˆ€π‘¦ ∈ 𝐾 ((πΉβ€˜π‘ƒ) ∈ 𝑦 β†’ βˆƒπ‘₯ ∈ 𝐽 (𝑃 ∈ π‘₯ ∧ (𝐹 β€œ π‘₯) βŠ† 𝑦))))
12 toponmax 13610 . . . . . 6 (𝐾 ∈ (TopOnβ€˜π‘Œ) β†’ π‘Œ ∈ 𝐾)
13 toponmax 13610 . . . . . 6 (𝐽 ∈ (TopOnβ€˜π‘‹) β†’ 𝑋 ∈ 𝐽)
14 elmapg 6663 . . . . . 6 ((π‘Œ ∈ 𝐾 ∧ 𝑋 ∈ 𝐽) β†’ (𝐹 ∈ (π‘Œ β†‘π‘š 𝑋) ↔ 𝐹:π‘‹βŸΆπ‘Œ))
1512, 13, 14syl2anr 290 . . . . 5 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ)) β†’ (𝐹 ∈ (π‘Œ β†‘π‘š 𝑋) ↔ 𝐹:π‘‹βŸΆπ‘Œ))
1615anbi1d 465 . . . 4 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ)) β†’ ((𝐹 ∈ (π‘Œ β†‘π‘š 𝑋) ∧ βˆ€π‘¦ ∈ 𝐾 ((πΉβ€˜π‘ƒ) ∈ 𝑦 β†’ βˆƒπ‘₯ ∈ 𝐽 (𝑃 ∈ π‘₯ ∧ (𝐹 β€œ π‘₯) βŠ† 𝑦))) ↔ (𝐹:π‘‹βŸΆπ‘Œ ∧ βˆ€π‘¦ ∈ 𝐾 ((πΉβ€˜π‘ƒ) ∈ 𝑦 β†’ βˆƒπ‘₯ ∈ 𝐽 (𝑃 ∈ π‘₯ ∧ (𝐹 β€œ π‘₯) βŠ† 𝑦)))))
1711, 16bitrid 192 . . 3 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ)) β†’ (𝐹 ∈ {𝑓 ∈ (π‘Œ β†‘π‘š 𝑋) ∣ βˆ€π‘¦ ∈ 𝐾 ((π‘“β€˜π‘ƒ) ∈ 𝑦 β†’ βˆƒπ‘₯ ∈ 𝐽 (𝑃 ∈ π‘₯ ∧ (𝑓 β€œ π‘₯) βŠ† 𝑦))} ↔ (𝐹:π‘‹βŸΆπ‘Œ ∧ βˆ€π‘¦ ∈ 𝐾 ((πΉβ€˜π‘ƒ) ∈ 𝑦 β†’ βˆƒπ‘₯ ∈ 𝐽 (𝑃 ∈ π‘₯ ∧ (𝐹 β€œ π‘₯) βŠ† 𝑦)))))
18173adant3 1017 . 2 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) β†’ (𝐹 ∈ {𝑓 ∈ (π‘Œ β†‘π‘š 𝑋) ∣ βˆ€π‘¦ ∈ 𝐾 ((π‘“β€˜π‘ƒ) ∈ 𝑦 β†’ βˆƒπ‘₯ ∈ 𝐽 (𝑃 ∈ π‘₯ ∧ (𝑓 β€œ π‘₯) βŠ† 𝑦))} ↔ (𝐹:π‘‹βŸΆπ‘Œ ∧ βˆ€π‘¦ ∈ 𝐾 ((πΉβ€˜π‘ƒ) ∈ 𝑦 β†’ βˆƒπ‘₯ ∈ 𝐽 (𝑃 ∈ π‘₯ ∧ (𝐹 β€œ π‘₯) βŠ† 𝑦)))))
192, 18bitrd 188 1 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) β†’ (𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘ƒ) ↔ (𝐹:π‘‹βŸΆπ‘Œ ∧ βˆ€π‘¦ ∈ 𝐾 ((πΉβ€˜π‘ƒ) ∈ 𝑦 β†’ βˆƒπ‘₯ ∈ 𝐽 (𝑃 ∈ π‘₯ ∧ (𝐹 β€œ π‘₯) βŠ† 𝑦)))))
Colors of variables: wff set class
Syntax hints:   β†’ wi 4   ∧ wa 104   ↔ wb 105   ∧ w3a 978   = wceq 1353   ∈ wcel 2148  βˆ€wral 2455  βˆƒwrex 2456  {crab 2459   βŠ† wss 3131   β€œ cima 4631  βŸΆwf 5214  β€˜cfv 5218  (class class class)co 5877   β†‘π‘š cmap 6650  TopOnctopon 13595   CnP ccnp 13771
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-fv 5226  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-map 6652  df-top 13583  df-topon 13596  df-cnp 13774
This theorem is referenced by:  iscnp3  13788  cnpf2  13792  tgcnp  13794  icnpimaex  13796  iscnp4  13803  cnpnei  13804  cnptopco  13807  cnconst2  13818  cnptopresti  13823  cnptoprest  13824  cnptoprest2  13825
  Copyright terms: Public domain W3C validator