ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iscnp GIF version

Theorem iscnp 14867
Description: The predicate "the class 𝐹 is a continuous function from topology 𝐽 to topology 𝐾 at point 𝑃". Based on Theorem 7.2(g) of [Munkres] p. 107. (Contributed by NM, 17-Oct-2006.) (Revised by Mario Carneiro, 21-Aug-2015.)
Assertion
Ref Expression
iscnp ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦𝐾 ((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦)))))
Distinct variable groups:   𝑥,𝑦,𝐽   𝑥,𝐾,𝑦   𝑥,𝑋,𝑦   𝑥,𝐹,𝑦   𝑥,𝑃,𝑦   𝑥,𝑌,𝑦

Proof of Theorem iscnp
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 cnpval 14866 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) → ((𝐽 CnP 𝐾)‘𝑃) = {𝑓 ∈ (𝑌𝑚 𝑋) ∣ ∀𝑦𝐾 ((𝑓𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝑓𝑥) ⊆ 𝑦))})
21eleq2d 2299 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ 𝐹 ∈ {𝑓 ∈ (𝑌𝑚 𝑋) ∣ ∀𝑦𝐾 ((𝑓𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝑓𝑥) ⊆ 𝑦))}))
3 fveq1 5625 . . . . . . . 8 (𝑓 = 𝐹 → (𝑓𝑃) = (𝐹𝑃))
43eleq1d 2298 . . . . . . 7 (𝑓 = 𝐹 → ((𝑓𝑃) ∈ 𝑦 ↔ (𝐹𝑃) ∈ 𝑦))
5 imaeq1 5062 . . . . . . . . . 10 (𝑓 = 𝐹 → (𝑓𝑥) = (𝐹𝑥))
65sseq1d 3253 . . . . . . . . 9 (𝑓 = 𝐹 → ((𝑓𝑥) ⊆ 𝑦 ↔ (𝐹𝑥) ⊆ 𝑦))
76anbi2d 464 . . . . . . . 8 (𝑓 = 𝐹 → ((𝑃𝑥 ∧ (𝑓𝑥) ⊆ 𝑦) ↔ (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦)))
87rexbidv 2531 . . . . . . 7 (𝑓 = 𝐹 → (∃𝑥𝐽 (𝑃𝑥 ∧ (𝑓𝑥) ⊆ 𝑦) ↔ ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦)))
94, 8imbi12d 234 . . . . . 6 (𝑓 = 𝐹 → (((𝑓𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝑓𝑥) ⊆ 𝑦)) ↔ ((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦))))
109ralbidv 2530 . . . . 5 (𝑓 = 𝐹 → (∀𝑦𝐾 ((𝑓𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝑓𝑥) ⊆ 𝑦)) ↔ ∀𝑦𝐾 ((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦))))
1110elrab 2959 . . . 4 (𝐹 ∈ {𝑓 ∈ (𝑌𝑚 𝑋) ∣ ∀𝑦𝐾 ((𝑓𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝑓𝑥) ⊆ 𝑦))} ↔ (𝐹 ∈ (𝑌𝑚 𝑋) ∧ ∀𝑦𝐾 ((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦))))
12 toponmax 14693 . . . . . 6 (𝐾 ∈ (TopOn‘𝑌) → 𝑌𝐾)
13 toponmax 14693 . . . . . 6 (𝐽 ∈ (TopOn‘𝑋) → 𝑋𝐽)
14 elmapg 6806 . . . . . 6 ((𝑌𝐾𝑋𝐽) → (𝐹 ∈ (𝑌𝑚 𝑋) ↔ 𝐹:𝑋𝑌))
1512, 13, 14syl2anr 290 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝑌𝑚 𝑋) ↔ 𝐹:𝑋𝑌))
1615anbi1d 465 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → ((𝐹 ∈ (𝑌𝑚 𝑋) ∧ ∀𝑦𝐾 ((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦))) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦𝐾 ((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦)))))
1711, 16bitrid 192 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ {𝑓 ∈ (𝑌𝑚 𝑋) ∣ ∀𝑦𝐾 ((𝑓𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝑓𝑥) ⊆ 𝑦))} ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦𝐾 ((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦)))))
18173adant3 1041 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) → (𝐹 ∈ {𝑓 ∈ (𝑌𝑚 𝑋) ∣ ∀𝑦𝐾 ((𝑓𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝑓𝑥) ⊆ 𝑦))} ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦𝐾 ((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦)))))
192, 18bitrd 188 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦𝐾 ((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦)))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 1002   = wceq 1395  wcel 2200  wral 2508  wrex 2509  {crab 2512  wss 3197  cima 4721  wf 5313  cfv 5317  (class class class)co 6000  𝑚 cmap 6793  TopOnctopon 14678   CnP ccnp 14854
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-fv 5325  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-map 6795  df-top 14666  df-topon 14679  df-cnp 14857
This theorem is referenced by:  iscnp3  14871  cnpf2  14875  tgcnp  14877  icnpimaex  14879  iscnp4  14886  cnpnei  14887  cnptopco  14890  cnconst2  14901  cnptopresti  14906  cnptoprest  14907  cnptoprest2  14908
  Copyright terms: Public domain W3C validator