![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > lmodvs0 | GIF version |
Description: Anything times the zero vector is the zero vector. Equation 1b of [Kreyszig] p. 51. (Contributed by NM, 12-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) |
Ref | Expression |
---|---|
lmodvs0.f | ⊢ 𝐹 = (Scalar‘𝑊) |
lmodvs0.s | ⊢ · = ( ·𝑠 ‘𝑊) |
lmodvs0.k | ⊢ 𝐾 = (Base‘𝐹) |
lmodvs0.z | ⊢ 0 = (0g‘𝑊) |
Ref | Expression |
---|---|
lmodvs0 | ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝐾) → (𝑋 · 0 ) = 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lmodvs0.f | . . . . 5 ⊢ 𝐹 = (Scalar‘𝑊) | |
2 | 1 | lmodring 13791 | . . . 4 ⊢ (𝑊 ∈ LMod → 𝐹 ∈ Ring) |
3 | lmodvs0.k | . . . . 5 ⊢ 𝐾 = (Base‘𝐹) | |
4 | eqid 2193 | . . . . 5 ⊢ (.r‘𝐹) = (.r‘𝐹) | |
5 | eqid 2193 | . . . . 5 ⊢ (0g‘𝐹) = (0g‘𝐹) | |
6 | 3, 4, 5 | ringrz 13540 | . . . 4 ⊢ ((𝐹 ∈ Ring ∧ 𝑋 ∈ 𝐾) → (𝑋(.r‘𝐹)(0g‘𝐹)) = (0g‘𝐹)) |
7 | 2, 6 | sylan 283 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝐾) → (𝑋(.r‘𝐹)(0g‘𝐹)) = (0g‘𝐹)) |
8 | 7 | oveq1d 5933 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝐾) → ((𝑋(.r‘𝐹)(0g‘𝐹)) · 0 ) = ((0g‘𝐹) · 0 )) |
9 | simpl 109 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝐾) → 𝑊 ∈ LMod) | |
10 | simpr 110 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝐾) → 𝑋 ∈ 𝐾) | |
11 | 2 | adantr 276 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝐾) → 𝐹 ∈ Ring) |
12 | 3, 5 | ring0cl 13517 | . . . . 5 ⊢ (𝐹 ∈ Ring → (0g‘𝐹) ∈ 𝐾) |
13 | 11, 12 | syl 14 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝐾) → (0g‘𝐹) ∈ 𝐾) |
14 | eqid 2193 | . . . . . 6 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
15 | lmodvs0.z | . . . . . 6 ⊢ 0 = (0g‘𝑊) | |
16 | 14, 15 | lmod0vcl 13813 | . . . . 5 ⊢ (𝑊 ∈ LMod → 0 ∈ (Base‘𝑊)) |
17 | 16 | adantr 276 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝐾) → 0 ∈ (Base‘𝑊)) |
18 | lmodvs0.s | . . . . 5 ⊢ · = ( ·𝑠 ‘𝑊) | |
19 | 14, 1, 18, 3, 4 | lmodvsass 13809 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ (𝑋 ∈ 𝐾 ∧ (0g‘𝐹) ∈ 𝐾 ∧ 0 ∈ (Base‘𝑊))) → ((𝑋(.r‘𝐹)(0g‘𝐹)) · 0 ) = (𝑋 · ((0g‘𝐹) · 0 ))) |
20 | 9, 10, 13, 17, 19 | syl13anc 1251 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝐾) → ((𝑋(.r‘𝐹)(0g‘𝐹)) · 0 ) = (𝑋 · ((0g‘𝐹) · 0 ))) |
21 | 14, 1, 18, 5, 15 | lmod0vs 13817 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 0 ∈ (Base‘𝑊)) → ((0g‘𝐹) · 0 ) = 0 ) |
22 | 17, 21 | syldan 282 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝐾) → ((0g‘𝐹) · 0 ) = 0 ) |
23 | 22 | oveq2d 5934 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝐾) → (𝑋 · ((0g‘𝐹) · 0 )) = (𝑋 · 0 )) |
24 | 20, 23 | eqtrd 2226 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝐾) → ((𝑋(.r‘𝐹)(0g‘𝐹)) · 0 ) = (𝑋 · 0 )) |
25 | 8, 24, 22 | 3eqtr3d 2234 | 1 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝐾) → (𝑋 · 0 ) = 0 ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2164 ‘cfv 5254 (class class class)co 5918 Basecbs 12618 .rcmulr 12696 Scalarcsca 12698 ·𝑠 cvsca 12699 0gc0g 12867 Ringcrg 13492 LModclmod 13783 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-cnex 7963 ax-resscn 7964 ax-1cn 7965 ax-1re 7966 ax-icn 7967 ax-addcl 7968 ax-addrcl 7969 ax-mulcl 7970 ax-addcom 7972 ax-addass 7974 ax-i2m1 7977 ax-0lt1 7978 ax-0id 7980 ax-rnegex 7981 ax-pre-ltirr 7984 ax-pre-ltadd 7988 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-br 4030 df-opab 4091 df-mpt 4092 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-iota 5215 df-fun 5256 df-fn 5257 df-fv 5262 df-riota 5873 df-ov 5921 df-oprab 5922 df-mpo 5923 df-pnf 8056 df-mnf 8057 df-ltxr 8059 df-inn 8983 df-2 9041 df-3 9042 df-4 9043 df-5 9044 df-6 9045 df-ndx 12621 df-slot 12622 df-base 12624 df-sets 12625 df-plusg 12708 df-mulr 12709 df-sca 12711 df-vsca 12712 df-0g 12869 df-mgm 12939 df-sgrp 12985 df-mnd 12998 df-grp 13075 df-mgp 13417 df-ring 13494 df-lmod 13785 |
This theorem is referenced by: lmodfopne 13822 lsssn0 13866 |
Copyright terms: Public domain | W3C validator |