| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lmodvs0 | GIF version | ||
| Description: Anything times the zero vector is the zero vector. Equation 1b of [Kreyszig] p. 51. (Contributed by NM, 12-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) |
| Ref | Expression |
|---|---|
| lmodvs0.f | ⊢ 𝐹 = (Scalar‘𝑊) |
| lmodvs0.s | ⊢ · = ( ·𝑠 ‘𝑊) |
| lmodvs0.k | ⊢ 𝐾 = (Base‘𝐹) |
| lmodvs0.z | ⊢ 0 = (0g‘𝑊) |
| Ref | Expression |
|---|---|
| lmodvs0 | ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝐾) → (𝑋 · 0 ) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmodvs0.f | . . . . 5 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 2 | 1 | lmodring 14224 | . . . 4 ⊢ (𝑊 ∈ LMod → 𝐹 ∈ Ring) |
| 3 | lmodvs0.k | . . . . 5 ⊢ 𝐾 = (Base‘𝐹) | |
| 4 | eqid 2209 | . . . . 5 ⊢ (.r‘𝐹) = (.r‘𝐹) | |
| 5 | eqid 2209 | . . . . 5 ⊢ (0g‘𝐹) = (0g‘𝐹) | |
| 6 | 3, 4, 5 | ringrz 13973 | . . . 4 ⊢ ((𝐹 ∈ Ring ∧ 𝑋 ∈ 𝐾) → (𝑋(.r‘𝐹)(0g‘𝐹)) = (0g‘𝐹)) |
| 7 | 2, 6 | sylan 283 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝐾) → (𝑋(.r‘𝐹)(0g‘𝐹)) = (0g‘𝐹)) |
| 8 | 7 | oveq1d 5989 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝐾) → ((𝑋(.r‘𝐹)(0g‘𝐹)) · 0 ) = ((0g‘𝐹) · 0 )) |
| 9 | simpl 109 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝐾) → 𝑊 ∈ LMod) | |
| 10 | simpr 110 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝐾) → 𝑋 ∈ 𝐾) | |
| 11 | 2 | adantr 276 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝐾) → 𝐹 ∈ Ring) |
| 12 | 3, 5 | ring0cl 13950 | . . . . 5 ⊢ (𝐹 ∈ Ring → (0g‘𝐹) ∈ 𝐾) |
| 13 | 11, 12 | syl 14 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝐾) → (0g‘𝐹) ∈ 𝐾) |
| 14 | eqid 2209 | . . . . . 6 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
| 15 | lmodvs0.z | . . . . . 6 ⊢ 0 = (0g‘𝑊) | |
| 16 | 14, 15 | lmod0vcl 14246 | . . . . 5 ⊢ (𝑊 ∈ LMod → 0 ∈ (Base‘𝑊)) |
| 17 | 16 | adantr 276 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝐾) → 0 ∈ (Base‘𝑊)) |
| 18 | lmodvs0.s | . . . . 5 ⊢ · = ( ·𝑠 ‘𝑊) | |
| 19 | 14, 1, 18, 3, 4 | lmodvsass 14242 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ (𝑋 ∈ 𝐾 ∧ (0g‘𝐹) ∈ 𝐾 ∧ 0 ∈ (Base‘𝑊))) → ((𝑋(.r‘𝐹)(0g‘𝐹)) · 0 ) = (𝑋 · ((0g‘𝐹) · 0 ))) |
| 20 | 9, 10, 13, 17, 19 | syl13anc 1254 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝐾) → ((𝑋(.r‘𝐹)(0g‘𝐹)) · 0 ) = (𝑋 · ((0g‘𝐹) · 0 ))) |
| 21 | 14, 1, 18, 5, 15 | lmod0vs 14250 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 0 ∈ (Base‘𝑊)) → ((0g‘𝐹) · 0 ) = 0 ) |
| 22 | 17, 21 | syldan 282 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝐾) → ((0g‘𝐹) · 0 ) = 0 ) |
| 23 | 22 | oveq2d 5990 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝐾) → (𝑋 · ((0g‘𝐹) · 0 )) = (𝑋 · 0 )) |
| 24 | 20, 23 | eqtrd 2242 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝐾) → ((𝑋(.r‘𝐹)(0g‘𝐹)) · 0 ) = (𝑋 · 0 )) |
| 25 | 8, 24, 22 | 3eqtr3d 2250 | 1 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝐾) → (𝑋 · 0 ) = 0 ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1375 ∈ wcel 2180 ‘cfv 5294 (class class class)co 5974 Basecbs 12998 .rcmulr 13077 Scalarcsca 13079 ·𝑠 cvsca 13080 0gc0g 13255 Ringcrg 13925 LModclmod 14216 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-sep 4181 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-setind 4606 ax-cnex 8058 ax-resscn 8059 ax-1cn 8060 ax-1re 8061 ax-icn 8062 ax-addcl 8063 ax-addrcl 8064 ax-mulcl 8065 ax-addcom 8067 ax-addass 8069 ax-i2m1 8072 ax-0lt1 8073 ax-0id 8075 ax-rnegex 8076 ax-pre-ltirr 8079 ax-pre-ltadd 8083 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-nel 2476 df-ral 2493 df-rex 2494 df-reu 2495 df-rmo 2496 df-rab 2497 df-v 2781 df-sbc 3009 df-csb 3105 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-nul 3472 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-int 3903 df-br 4063 df-opab 4125 df-mpt 4126 df-id 4361 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-iota 5254 df-fun 5296 df-fn 5297 df-fv 5302 df-riota 5927 df-ov 5977 df-oprab 5978 df-mpo 5979 df-pnf 8151 df-mnf 8152 df-ltxr 8154 df-inn 9079 df-2 9137 df-3 9138 df-4 9139 df-5 9140 df-6 9141 df-ndx 13001 df-slot 13002 df-base 13004 df-sets 13005 df-plusg 13089 df-mulr 13090 df-sca 13092 df-vsca 13093 df-0g 13257 df-mgm 13355 df-sgrp 13401 df-mnd 13416 df-grp 13502 df-mgp 13850 df-ring 13927 df-lmod 14218 |
| This theorem is referenced by: lmodfopne 14255 lsssn0 14299 |
| Copyright terms: Public domain | W3C validator |