ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unitgrpbasd Unicode version

Theorem unitgrpbasd 13284
Description: The base set of the group of units. (Contributed by Mario Carneiro, 25-Dec-2014.)
Hypotheses
Ref Expression
unitgrpbasd.u  |-  ( ph  ->  U  =  (Unit `  R ) )
unitgrpbasd.g  |-  ( ph  ->  G  =  ( (mulGrp `  R )s  U ) )
unitgrpbasd.r  |-  ( ph  ->  R  e. SRing )
Assertion
Ref Expression
unitgrpbasd  |-  ( ph  ->  U  =  ( Base `  G ) )

Proof of Theorem unitgrpbasd
StepHypRef Expression
1 unitgrpbasd.g . 2  |-  ( ph  ->  G  =  ( (mulGrp `  R )s  U ) )
2 unitgrpbasd.r . . 3  |-  ( ph  ->  R  e. SRing )
3 eqid 2177 . . . 4  |-  (mulGrp `  R )  =  (mulGrp `  R )
4 eqid 2177 . . . 4  |-  ( Base `  R )  =  (
Base `  R )
53, 4mgpbasg 13136 . . 3  |-  ( R  e. SRing  ->  ( Base `  R
)  =  ( Base `  (mulGrp `  R )
) )
62, 5syl 14 . 2  |-  ( ph  ->  ( Base `  R
)  =  ( Base `  (mulGrp `  R )
) )
73mgpex 13135 . . 3  |-  ( R  e. SRing  ->  (mulGrp `  R )  e.  _V )
82, 7syl 14 . 2  |-  ( ph  ->  (mulGrp `  R )  e.  _V )
9 eqidd 2178 . . 3  |-  ( ph  ->  ( Base `  R
)  =  ( Base `  R ) )
10 unitgrpbasd.u . . 3  |-  ( ph  ->  U  =  (Unit `  R ) )
119, 10, 2unitssd 13278 . 2  |-  ( ph  ->  U  C_  ( Base `  R ) )
121, 6, 8, 11ressbas2d 12528 1  |-  ( ph  ->  U  =  ( Base `  G ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1353    e. wcel 2148   _Vcvv 2738   ` cfv 5217  (class class class)co 5875   Basecbs 12462   ↾s cress 12463  mulGrpcmgp 13130  SRingcsrg 13146  Unitcui 13256
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4122  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-setind 4537  ax-cnex 7902  ax-resscn 7903  ax-1cn 7904  ax-1re 7905  ax-icn 7906  ax-addcl 7907  ax-addrcl 7908  ax-mulcl 7909  ax-addcom 7911  ax-addass 7913  ax-i2m1 7916  ax-0lt1 7917  ax-0id 7919  ax-rnegex 7920  ax-pre-ltirr 7923  ax-pre-ltadd 7927
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2740  df-sbc 2964  df-csb 3059  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-nul 3424  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-int 3846  df-br 4005  df-opab 4066  df-mpt 4067  df-id 4294  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-ima 4640  df-iota 5179  df-fun 5219  df-fn 5220  df-fv 5225  df-riota 5831  df-ov 5878  df-oprab 5879  df-mpo 5880  df-pnf 7994  df-mnf 7995  df-ltxr 7997  df-inn 8920  df-2 8978  df-3 8979  df-ndx 12465  df-slot 12466  df-base 12468  df-sets 12469  df-iress 12470  df-plusg 12549  df-mulr 12550  df-0g 12707  df-mgm 12775  df-sgrp 12808  df-mnd 12818  df-mgp 13131  df-srg 13147  df-dvdsr 13258  df-unit 13259
This theorem is referenced by:  unitgrp  13285  unitinvcl  13292  unitinvinv  13293  unitlinv  13295  unitrinv  13296  rdivmuldivd  13313  invrpropdg  13318  subrgugrp  13361
  Copyright terms: Public domain W3C validator