ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mgptsetg Unicode version

Theorem mgptsetg 13069
Description: Topology component of the multiplication group. (Contributed by Mario Carneiro, 5-Oct-2015.)
Hypothesis
Ref Expression
mgpbas.1  |-  M  =  (mulGrp `  R )
Assertion
Ref Expression
mgptsetg  |-  ( R  e.  V  ->  (TopSet `  R )  =  (TopSet `  M ) )

Proof of Theorem mgptsetg
StepHypRef Expression
1 mulrslid 12582 . . . 4  |-  ( .r  = Slot  ( .r `  ndx )  /\  ( .r `  ndx )  e.  NN )
21slotex 12481 . . 3  |-  ( R  e.  V  ->  ( .r `  R )  e. 
_V )
3 tsetslid 12635 . . . 4  |-  (TopSet  = Slot  (TopSet `  ndx )  /\  (TopSet `  ndx )  e.  NN )
4 tsetndxnplusgndx 12639 . . . 4  |-  (TopSet `  ndx )  =/=  ( +g  `  ndx )
5 plusgslid 12563 . . . . 5  |-  ( +g  = Slot  ( +g  `  ndx )  /\  ( +g  `  ndx )  e.  NN )
65simpri 113 . . . 4  |-  ( +g  ` 
ndx )  e.  NN
73, 4, 6setsslnid 12506 . . 3  |-  ( ( R  e.  V  /\  ( .r `  R )  e.  _V )  -> 
(TopSet `  R )  =  (TopSet `  ( R sSet  <.
( +g  `  ndx ) ,  ( .r `  R ) >. )
) )
82, 7mpdan 421 . 2  |-  ( R  e.  V  ->  (TopSet `  R )  =  (TopSet `  ( R sSet  <. ( +g  `  ndx ) ,  ( .r `  R
) >. ) ) )
9 mgpbas.1 . . . 4  |-  M  =  (mulGrp `  R )
10 eqid 2177 . . . 4  |-  ( .r
`  R )  =  ( .r `  R
)
119, 10mgpvalg 13064 . . 3  |-  ( R  e.  V  ->  M  =  ( R sSet  <. ( +g  `  ndx ) ,  ( .r `  R ) >. )
)
1211fveq2d 5518 . 2  |-  ( R  e.  V  ->  (TopSet `  M )  =  (TopSet `  ( R sSet  <. ( +g  `  ndx ) ,  ( .r `  R
) >. ) ) )
138, 12eqtr4d 2213 1  |-  ( R  e.  V  ->  (TopSet `  R )  =  (TopSet `  M ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1353    e. wcel 2148   _Vcvv 2737   <.cop 3595   ` cfv 5215  (class class class)co 5872   NNcn 8915   ndxcnx 12451   sSet csts 12452  Slot cslot 12453   +g cplusg 12528   .rcmulr 12529  TopSetcts 12534  mulGrpcmgp 13061
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4120  ax-pow 4173  ax-pr 4208  ax-un 4432  ax-setind 4535  ax-cnex 7899  ax-resscn 7900  ax-1cn 7901  ax-1re 7902  ax-icn 7903  ax-addcl 7904  ax-addrcl 7905  ax-mulcl 7906  ax-addcom 7908  ax-addass 7910  ax-i2m1 7913  ax-0lt1 7914  ax-0id 7916  ax-rnegex 7917  ax-pre-ltirr 7920  ax-pre-lttrn 7922  ax-pre-ltadd 7924
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-int 3845  df-br 4003  df-opab 4064  df-mpt 4065  df-id 4292  df-xp 4631  df-rel 4632  df-cnv 4633  df-co 4634  df-dm 4635  df-rn 4636  df-res 4637  df-iota 5177  df-fun 5217  df-fn 5218  df-fv 5223  df-ov 5875  df-oprab 5876  df-mpo 5877  df-pnf 7990  df-mnf 7991  df-ltxr 7993  df-inn 8916  df-2 8974  df-3 8975  df-4 8976  df-5 8977  df-6 8978  df-7 8979  df-8 8980  df-9 8981  df-ndx 12457  df-slot 12458  df-sets 12461  df-plusg 12541  df-mulr 12542  df-tset 12547  df-mgp 13062
This theorem is referenced by:  mgptopng  13070
  Copyright terms: Public domain W3C validator