| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mgptsetg | GIF version | ||
| Description: Topology component of the multiplication group. (Contributed by Mario Carneiro, 5-Oct-2015.) |
| Ref | Expression |
|---|---|
| mgpbas.1 | ⊢ 𝑀 = (mulGrp‘𝑅) |
| Ref | Expression |
|---|---|
| mgptsetg | ⊢ (𝑅 ∈ 𝑉 → (TopSet‘𝑅) = (TopSet‘𝑀)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulrslid 12834 | . . . 4 ⊢ (.r = Slot (.r‘ndx) ∧ (.r‘ndx) ∈ ℕ) | |
| 2 | 1 | slotex 12730 | . . 3 ⊢ (𝑅 ∈ 𝑉 → (.r‘𝑅) ∈ V) |
| 3 | tsetslid 12890 | . . . 4 ⊢ (TopSet = Slot (TopSet‘ndx) ∧ (TopSet‘ndx) ∈ ℕ) | |
| 4 | tsetndxnplusgndx 12894 | . . . 4 ⊢ (TopSet‘ndx) ≠ (+g‘ndx) | |
| 5 | plusgslid 12815 | . . . . 5 ⊢ (+g = Slot (+g‘ndx) ∧ (+g‘ndx) ∈ ℕ) | |
| 6 | 5 | simpri 113 | . . . 4 ⊢ (+g‘ndx) ∈ ℕ |
| 7 | 3, 4, 6 | setsslnid 12755 | . . 3 ⊢ ((𝑅 ∈ 𝑉 ∧ (.r‘𝑅) ∈ V) → (TopSet‘𝑅) = (TopSet‘(𝑅 sSet 〈(+g‘ndx), (.r‘𝑅)〉))) |
| 8 | 2, 7 | mpdan 421 | . 2 ⊢ (𝑅 ∈ 𝑉 → (TopSet‘𝑅) = (TopSet‘(𝑅 sSet 〈(+g‘ndx), (.r‘𝑅)〉))) |
| 9 | mgpbas.1 | . . . 4 ⊢ 𝑀 = (mulGrp‘𝑅) | |
| 10 | eqid 2196 | . . . 4 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 11 | 9, 10 | mgpvalg 13555 | . . 3 ⊢ (𝑅 ∈ 𝑉 → 𝑀 = (𝑅 sSet 〈(+g‘ndx), (.r‘𝑅)〉)) |
| 12 | 11 | fveq2d 5565 | . 2 ⊢ (𝑅 ∈ 𝑉 → (TopSet‘𝑀) = (TopSet‘(𝑅 sSet 〈(+g‘ndx), (.r‘𝑅)〉))) |
| 13 | 8, 12 | eqtr4d 2232 | 1 ⊢ (𝑅 ∈ 𝑉 → (TopSet‘𝑅) = (TopSet‘𝑀)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2167 Vcvv 2763 〈cop 3626 ‘cfv 5259 (class class class)co 5925 ℕcn 9007 ndxcnx 12700 sSet csts 12701 Slot cslot 12702 +gcplusg 12780 .rcmulr 12781 TopSetcts 12786 mulGrpcmgp 13552 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-addcom 7996 ax-addass 7998 ax-i2m1 8001 ax-0lt1 8002 ax-0id 8004 ax-rnegex 8005 ax-pre-ltirr 8008 ax-pre-lttrn 8010 ax-pre-ltadd 8012 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-iota 5220 df-fun 5261 df-fn 5262 df-fv 5267 df-ov 5928 df-oprab 5929 df-mpo 5930 df-pnf 8080 df-mnf 8081 df-ltxr 8083 df-inn 9008 df-2 9066 df-3 9067 df-4 9068 df-5 9069 df-6 9070 df-7 9071 df-8 9072 df-9 9073 df-ndx 12706 df-slot 12707 df-sets 12710 df-plusg 12793 df-mulr 12794 df-tset 12799 df-mgp 13553 |
| This theorem is referenced by: mgptopng 13561 |
| Copyright terms: Public domain | W3C validator |