![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mgptsetg | GIF version |
Description: Topology component of the multiplication group. (Contributed by Mario Carneiro, 5-Oct-2015.) |
Ref | Expression |
---|---|
mgpbas.1 | ⊢ 𝑀 = (mulGrp‘𝑅) |
Ref | Expression |
---|---|
mgptsetg | ⊢ (𝑅 ∈ 𝑉 → (TopSet‘𝑅) = (TopSet‘𝑀)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mulrslid 12752 | . . . 4 ⊢ (.r = Slot (.r‘ndx) ∧ (.r‘ndx) ∈ ℕ) | |
2 | 1 | slotex 12648 | . . 3 ⊢ (𝑅 ∈ 𝑉 → (.r‘𝑅) ∈ V) |
3 | tsetslid 12808 | . . . 4 ⊢ (TopSet = Slot (TopSet‘ndx) ∧ (TopSet‘ndx) ∈ ℕ) | |
4 | tsetndxnplusgndx 12812 | . . . 4 ⊢ (TopSet‘ndx) ≠ (+g‘ndx) | |
5 | plusgslid 12733 | . . . . 5 ⊢ (+g = Slot (+g‘ndx) ∧ (+g‘ndx) ∈ ℕ) | |
6 | 5 | simpri 113 | . . . 4 ⊢ (+g‘ndx) ∈ ℕ |
7 | 3, 4, 6 | setsslnid 12673 | . . 3 ⊢ ((𝑅 ∈ 𝑉 ∧ (.r‘𝑅) ∈ V) → (TopSet‘𝑅) = (TopSet‘(𝑅 sSet 〈(+g‘ndx), (.r‘𝑅)〉))) |
8 | 2, 7 | mpdan 421 | . 2 ⊢ (𝑅 ∈ 𝑉 → (TopSet‘𝑅) = (TopSet‘(𝑅 sSet 〈(+g‘ndx), (.r‘𝑅)〉))) |
9 | mgpbas.1 | . . . 4 ⊢ 𝑀 = (mulGrp‘𝑅) | |
10 | eqid 2193 | . . . 4 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
11 | 9, 10 | mgpvalg 13422 | . . 3 ⊢ (𝑅 ∈ 𝑉 → 𝑀 = (𝑅 sSet 〈(+g‘ndx), (.r‘𝑅)〉)) |
12 | 11 | fveq2d 5559 | . 2 ⊢ (𝑅 ∈ 𝑉 → (TopSet‘𝑀) = (TopSet‘(𝑅 sSet 〈(+g‘ndx), (.r‘𝑅)〉))) |
13 | 8, 12 | eqtr4d 2229 | 1 ⊢ (𝑅 ∈ 𝑉 → (TopSet‘𝑅) = (TopSet‘𝑀)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2164 Vcvv 2760 〈cop 3622 ‘cfv 5255 (class class class)co 5919 ℕcn 8984 ndxcnx 12618 sSet csts 12619 Slot cslot 12620 +gcplusg 12698 .rcmulr 12699 TopSetcts 12704 mulGrpcmgp 13419 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-cnex 7965 ax-resscn 7966 ax-1cn 7967 ax-1re 7968 ax-icn 7969 ax-addcl 7970 ax-addrcl 7971 ax-mulcl 7972 ax-addcom 7974 ax-addass 7976 ax-i2m1 7979 ax-0lt1 7980 ax-0id 7982 ax-rnegex 7983 ax-pre-ltirr 7986 ax-pre-lttrn 7988 ax-pre-ltadd 7990 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-nul 3448 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-br 4031 df-opab 4092 df-mpt 4093 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-iota 5216 df-fun 5257 df-fn 5258 df-fv 5263 df-ov 5922 df-oprab 5923 df-mpo 5924 df-pnf 8058 df-mnf 8059 df-ltxr 8061 df-inn 8985 df-2 9043 df-3 9044 df-4 9045 df-5 9046 df-6 9047 df-7 9048 df-8 9049 df-9 9050 df-ndx 12624 df-slot 12625 df-sets 12628 df-plusg 12711 df-mulr 12712 df-tset 12717 df-mgp 13420 |
This theorem is referenced by: mgptopng 13428 |
Copyright terms: Public domain | W3C validator |