| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > qcn | Unicode version | ||
| Description: A rational number is a complex number. (Contributed by NM, 2-Aug-2004.) |
| Ref | Expression |
|---|---|
| qcn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qsscn 9754 |
. 2
| |
| 2 | 1 | sseli 3189 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-pow 4219 ax-pr 4254 ax-un 4481 ax-setind 4586 ax-cnex 8018 ax-resscn 8019 ax-1cn 8020 ax-1re 8021 ax-icn 8022 ax-addcl 8023 ax-addrcl 8024 ax-mulcl 8025 ax-mulrcl 8026 ax-addcom 8027 ax-mulcom 8028 ax-addass 8029 ax-mulass 8030 ax-distr 8031 ax-i2m1 8032 ax-0lt1 8033 ax-1rid 8034 ax-0id 8035 ax-rnegex 8036 ax-precex 8037 ax-cnre 8038 ax-pre-ltirr 8039 ax-pre-ltwlin 8040 ax-pre-lttrn 8041 ax-pre-apti 8042 ax-pre-ltadd 8043 ax-pre-mulgt0 8044 ax-pre-mulext 8045 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-reu 2491 df-rmo 2492 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4046 df-opab 4107 df-mpt 4108 df-id 4341 df-po 4344 df-iso 4345 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-rn 4687 df-res 4688 df-ima 4689 df-iota 5233 df-fun 5274 df-fn 5275 df-f 5276 df-fv 5280 df-riota 5901 df-ov 5949 df-oprab 5950 df-mpo 5951 df-1st 6228 df-2nd 6229 df-pnf 8111 df-mnf 8112 df-xr 8113 df-ltxr 8114 df-le 8115 df-sub 8247 df-neg 8248 df-reap 8650 df-ap 8657 df-div 8748 df-inn 9039 df-z 9375 df-q 9743 |
| This theorem is referenced by: qsubcl 9761 qapne 9762 qdivcl 9766 qrevaddcl 9767 irradd 9769 irrmul 9770 irrmulap 9771 qavgle 10403 divfl0 10441 flqzadd 10443 intqfrac2 10466 flqdiv 10468 modqvalr 10472 flqpmodeq 10474 modq0 10476 mulqmod0 10477 negqmod0 10478 modqlt 10480 modqdiffl 10482 modqfrac 10484 flqmod 10485 intqfrac 10486 modqmulnn 10489 modqvalp1 10490 modqid 10496 modqcyc 10506 modqcyc2 10507 modqadd1 10508 modqaddabs 10509 modqmuladdnn0 10515 qnegmod 10516 modqadd2mod 10521 modqm1p1mod0 10522 modqmul1 10524 modqnegd 10526 modqadd12d 10527 modqsub12d 10528 q2txmodxeq0 10531 q2submod 10532 modqmulmodr 10537 modqaddmulmod 10538 modqdi 10539 modqsubdir 10540 modqeqmodmin 10541 qsqcl 10758 qsqeqor 10797 eirraplem 12121 bezoutlemnewy 12350 sqrt2irraplemnn 12534 pcqdiv 12663 pcexp 12665 pcadd 12696 pcadd2 12697 qexpz 12708 4sqlem5 12738 4sqlem10 12743 logbgcd1irraplemap 15474 ex-ceil 15699 qdencn 16003 apdifflemf 16022 apdifflemr 16023 apdiff 16024 |
| Copyright terms: Public domain | W3C validator |